skip to main content


Search for: All records

Award ID contains: 1822026

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aikens, David M ; Rehn, Henning ; Thibault, Simon ; Uhlendorf, Kristina (Ed.)
    We developed, tested, and applied a software tool that automatically generates high-accuracy CAD models of freeform elements with datums and fiducials, facilitating the efficient transition from freeform design to fabrication and measurement. 
    more » « less
  2. Aikens, David M ; Rehn, Henning ; Thibault, Simon ; Uhlendorf, Kristina (Ed.)
    Afocal telescopes are often used as foreoptics to existing imaging systems. Here, we discuss some unique aspects of designing afocal systems and detail various afocal design studies we performed using freeform optics. 
    more » « less
  3. Nodal Aberration Theory (NAT) was developed to explain the field dependency of aberration field centers in the image plane of nominally rotationally symmetric optical systems that have lost their symmetry through misalignments. A new insight into the theory led to calculating the sigma vectors, which locate the aberration field centers, using the angle between a real-ray trace of the optical axis ray (OAR) and the normal of the local surface where “local” refers to the object and image optical spaces of that surface. Here, we detail the sigma vector calculations for general optical systems and provide an experimental investigation of a misaligned system with a high-precision customized Cassegrain telescope. In the simulations, a Newtonian telescope, a Cassegrain telescope, and a three-mirror anastigmat telescope were misaligned intentionally in ray-tracing software. The sigma vectors were calculated analytically for the third-order aberrations of astigmatism and coma. Experimentally, the same perturbations were implemented for the Cassegrain telescope system, and the aberrations were quantified through interferometric measurements on a grid of field points in the image plane that verified the analytical derivation and simulations. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. DeGroote_Nelson, Jessica ; Unger, Blair L (Ed.)
    Traditional optical manufacturing techniques such as abrasive polishing and diamond turning create precise surfaces by removing material from the optical surface of a mirror. Such techniques often require many cycles of removal and metrology and can leave surface roughness or tool marks that negatively affect the straylight properties of an optical system. These residual artifacts often necessitate expensive postprocessing such as ion beam finishing. Limiting straylight is particularly crucial in the design of reflecting coronagraphs or optical systems that are sensitive to scattered light, for example for exoplanet detection, where even low-level scattering can degrade contrast ratios below the sensitivity needed to detect exoplanets. We introduce a non-contact method for shaping thin front-surface mirrors to avoid tool artifacts. Using laser techniques to alter local surface stresses, we deterministically introduce ≥ 8 waves (632.8 nm) of shape to 2 mm thick substrates. A deterministic method for creating arbitrary surface figures is under development and calibration. 
    more » « less
  5. In this work, we present a methodology for predicting the optical performance impacts of random and structured MSF surface errors using pupil-difference probability distribution (PDPD) moments. In addition, we show that, for random mid-spatial frequency (MSF) surface errors, performance estimates from the PDPD moments converge to performance estimates that assume random statistics. Finally, we apply these methods to several MSF surface errors with different distributions and compare estimated optical performance values to predictions based on earlier methods assuming random error distributions.

     
    more » « less
  6. Aikens, David M ; Rehn, Henning ; Thibault, Simon ; Uhlendorf, Kristina (Ed.)
    We consider the requirements for first-order pupil location control using the matrix method for both finite-conjugate systems and afocal systems at infinite imaging conjugates. We show that two-element systems allow for only limited pupil location control, while with three elements or more the first-order pupil locations can be freely and independently controlled. 
    more » « less
  7. Afocal telescopes are often used as foreoptics to existing imaging systems to allow for application flexibility. To properly combine an afocal telescope with an existing imaging system, the exit pupil of the afocal telescope and the entrance pupil of the imaging system must be coincident. Additionally, the exit pupil of the afocal telescope must be well-formed; that is, it must be the correct size and shape to mitigate pupil-matching challenges. This work introduces processes for designing freeform afocal telescopes with an emphasis on understanding how to analyze and control the exit pupil quality of such systems. The included 3-mirror design examples demonstrate the advantages of using freeform surfaces in afocal systems and quantify the tradeoffs required to improve the exit pupil quality.

     
    more » « less
  8. We present a new, to the best of our knowledge, experimental method for assessing sub-micron level subsurface damage (SSD) on optical glass. The method correlates surface characteristics such as the fracture toughness and Young’s modulus via nanoindentation with the penetration depth into the tested surfaces at different overall penetration depths, as revealed by magnetorheological finishing spotting techniques. Our results on ground surfaces suggest that low surface roughness does not necessarily imply the absence of SSD. We also compared SSD on surfaces processed by deterministic microgrinding and femtosecond (fs) laser polishing. The fs-laser polished surfaces revealed no detectable SSD, thus establishing the feasibility of fs-laser polishing for precision optical manufacturing.

     
    more » « less
  9. Standard surface specifications for mid-spatial frequency (MSF) errors do not capture complex surface topography and often lose critical information by making simplifying assumptions about surface distribution and statistics. As a result, it is challenging to link surface specifications with optical performance. In this work, we present use of the pupil-difference probability distribution (PDPD) moments to assess general MSF surface errors and show how the PDPD moments relate to the relative modulation.

     
    more » « less
  10. Point spread function engineering uses specially designed phase plates placed at the exit pupil of an imaging system to reduce defocusing sensitivity. A custom phase plate is typically required for each system to enable extended depth of field imaging, so methods enabling variable extended depth of field imaging are of particular interest. In this paper, we discuss the fabrication of previously designed fixed cubic phase plates and variable phase plate pairs with quartic surface profiles and present a novel application of a point source microscope for performance characterization. Experimental measurements of through-focus point spread functions are compared with predictions to demonstrate and characterize the extended depth of field for both fixed and variable freeform phase plates.

     
    more » « less