skip to main content


Title: Asymptotic Simplification of Aggregation-Diffusion Equations Towards the Heat kernel
Abstract

We give sharp conditions for the large time asymptotic simplification of aggregation-diffusion equations with linear diffusion. As soon as the interaction potential is bounded and its first and second derivatives decay fast enough at infinity, then the linear diffusion overcomes its effect, either attractive or repulsive, for large times independently of the initial data, and solutions behave like the fundamental solution of the heat equation with some rate. The potential$$W(x) \sim \log |x|$$W(x)log|x|for$$|x| \gg 1$$|x|1appears as the natural limiting case when the intermediate asymptotics change. In order to obtain such a result, we produce uniform-in-time estimates in a suitable rescaled change of variables for the entropy, the second moment, Sobolev norms and the$$C^\alpha $$Cαregularity with a novel approach for this family of equations using modulus of continuity techniques.

 
more » « less
Award ID(s):
1900083
PAR ID:
10394542
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Archive for Rational Mechanics and Analysis
Volume:
247
Issue:
1
ISSN:
0003-9527
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Approximate integer programming is the following: For a given convex body$$K \subseteq {\mathbb {R}}^n$$KRn, either determine whether$$K \cap {\mathbb {Z}}^n$$KZnis empty, or find an integer point in the convex body$$2\cdot (K - c) +c$$2·(K-c)+cwhich isK, scaled by 2 from its center of gravityc. Approximate integer programming can be solved in time$$2^{O(n)}$$2O(n)while the fastest known methods for exact integer programming run in time$$2^{O(n)} \cdot n^n$$2O(n)·nn. So far, there are no efficient methods for integer programming known that are based on approximate integer programming. Our main contribution are two such methods, each yielding novel complexity results. First, we show that an integer point$$x^* \in (K \cap {\mathbb {Z}}^n)$$x(KZn)can be found in time$$2^{O(n)}$$2O(n), provided that theremaindersof each component$$x_i^* \mod \ell $$ximodfor some arbitrarily fixed$$\ell \ge 5(n+1)$$5(n+1)of$$x^*$$xare given. The algorithm is based on acutting-plane technique, iteratively halving the volume of the feasible set. The cutting planes are determined via approximate integer programming. Enumeration of the possible remainders gives a$$2^{O(n)}n^n$$2O(n)nnalgorithm for general integer programming. This matches the current best bound of an algorithm by Dadush (Integer programming, lattice algorithms, and deterministic, vol. Estimation. Georgia Institute of Technology, Atlanta, 2012) that is considerably more involved. Our algorithm also relies on a newasymmetric approximate Carathéodory theoremthat might be of interest on its own. Our second method concerns integer programming problems in equation-standard form$$Ax = b, 0 \le x \le u, \, x \in {\mathbb {Z}}^n$$Ax=b,0xu,xZn. Such a problem can be reduced to the solution of$$\prod _i O(\log u_i +1)$$iO(logui+1)approximate integer programming problems. This implies, for example thatknapsackorsubset-sumproblems withpolynomial variable range$$0 \le x_i \le p(n)$$0xip(n)can be solved in time$$(\log n)^{O(n)}$$(logn)O(n). For these problems, the best running time so far was$$n^n \cdot 2^{O(n)}$$nn·2O(n).

     
    more » « less
  2. Abstract

    We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ρ0meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$μ+and$$ \mu ^{-}$$μ-beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$c2$$< W<$$<W<17.0 GeV/$$c^2$$c2, 1.0 (GeV/c)$$^2$$2$$< Q^2<$$<Q2<10.0 (GeV/c)$$^2$$2and 0.01 (GeV/c)$$^2$$2$$< p_{\textrm{T}}^2<$$<pT2<0.5 (GeV/c)$$^2$$2. Here,Wdenotes the mass of the final hadronic system,$$Q^2$$Q2the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$pTthe transverse momentum of the$$\rho ^0$$ρ0meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$γTVL) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ρ0production.

     
    more » « less
  3. Abstract

    LetM(x) denote the largest cardinality of a subset of$$\{n \in \mathbb {N}: n \le x\}$${nN:nx}on which the Euler totient function$$\varphi (n)$$φ(n)is nondecreasing. We show that$$M(x) = \left( 1+O\left( \frac{(\log \log x)^5}{\log x}\right) \right) \pi (x)$$M(x)=1+O(loglogx)5logxπ(x)for all$$x \ge 10$$x10, answering questions of Erdős and Pollack–Pomerance–Treviño. A similar result is also obtained for the sum of divisors function$$\sigma (n)$$σ(n).

     
    more » « less
  4. Abstract

    Measurements of the associated production of a W boson and a charm ($${\text {c}}$$c) quark in proton–proton collisions at a centre-of-mass energy of 8$$\,\text {TeV}$$TeVare reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7$$\,\text {fb}^{-1}$$fb-1collected by the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm quark jets are selected using distinctive signatures of charm hadron decays. The product of the cross section and branching fraction$$\sigma (\text {p}\text {p}\rightarrow \text {W}+ {\text {c}}+ \text {X}) {\mathcal {B}}(\text {W}\rightarrow \ell \upnu )$$σ(ppW+c+X)B(Wν), where$$\ell = \text {e}$$=eor$$\upmu $$μ, and the cross section ratio$$\sigma (\text {p}\text {p}\rightarrow {{\text {W}}^{+} + \bar{{\text {c}}} + \text {X}}) / \sigma (\text {p}\text {p}\rightarrow {{\text {W}}^{-} + {\text {c}}+ \text {X}})$$σ(ppW++c¯+X)/σ(ppW-+c+X)are measured in a fiducial volume and differentially as functions of the pseudorapidity and of the transverse momentum of the lepton from the W boson decay. The results are compared with theoretical predictions. The impact of these measurements on the determination of the strange quark distribution is assessed.

     
    more » « less
  5. Abstract

    We prove that the Hilbert scheme ofkpoints on$${\mathbb {C}}^2$$C2($$\hbox {Hilb}^k[{\mathbb {C}}^2]$$Hilbk[C2]) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$${\mathbb {C}}^\times _\hbar $$Cħ×-action. First, we find a two-parameter family$$X_{k,l}$$Xk,lof self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$Hilbk[C2]is obtained via direct limit$$l\longrightarrow \infty $$land by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$\hbar $$ħ-opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-Nsheaves on$${\mathbb {P}}^2$$P2with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual.

     
    more » « less