Approximate integer programming is the following: For a given convex body
We give sharp conditions for the large time asymptotic simplification of aggregation-diffusion equations with linear diffusion. As soon as the interaction potential is bounded and its first and second derivatives decay fast enough at infinity, then the linear diffusion overcomes its effect, either attractive or repulsive, for large times independently of the initial data, and solutions behave like the fundamental solution of the heat equation with some rate. The potential
- Award ID(s):
- 1900083
- PAR ID:
- 10394542
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Archive for Rational Mechanics and Analysis
- Volume:
- 247
- Issue:
- 1
- ISSN:
- 0003-9527
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract , either determine whether$$K \subseteq {\mathbb {R}}^n$$ is empty, or find an integer point in the convex body$$K \cap {\mathbb {Z}}^n$$ which is$$2\cdot (K - c) +c$$ K , scaled by 2 from its center of gravityc . Approximate integer programming can be solved in time while the fastest known methods for exact integer programming run in time$$2^{O(n)}$$ . So far, there are no efficient methods for integer programming known that are based on approximate integer programming. Our main contribution are two such methods, each yielding novel complexity results. First, we show that an integer point$$2^{O(n)} \cdot n^n$$ can be found in time$$x^* \in (K \cap {\mathbb {Z}}^n)$$ , provided that the$$2^{O(n)}$$ remainders of each component for some arbitrarily fixed$$x_i^* \mod \ell $$ of$$\ell \ge 5(n+1)$$ are given. The algorithm is based on a$$x^*$$ cutting-plane technique , iteratively halving the volume of the feasible set. The cutting planes are determined via approximate integer programming. Enumeration of the possible remainders gives a algorithm for general integer programming. This matches the current best bound of an algorithm by Dadush (Integer programming, lattice algorithms, and deterministic, vol. Estimation. Georgia Institute of Technology, Atlanta, 2012) that is considerably more involved. Our algorithm also relies on a new$$2^{O(n)}n^n$$ asymmetric approximate Carathéodory theorem that might be of interest on its own. Our second method concerns integer programming problems in equation-standard form . Such a problem can be reduced to the solution of$$Ax = b, 0 \le x \le u, \, x \in {\mathbb {Z}}^n$$ approximate integer programming problems. This implies, for example that$$\prod _i O(\log u_i +1)$$ knapsack orsubset-sum problems withpolynomial variable range can be solved in time$$0 \le x_i \le p(n)$$ . For these problems, the best running time so far was$$(\log n)^{O(n)}$$ .$$n^n \cdot 2^{O(n)}$$ -
Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive
meson muoproduction at COMPASS using 160 GeV/$$\rho ^0$$ c polarised and$$ \mu ^{+}$$ beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$ \mu ^{-}$$ $$c^2$$ 17.0 GeV/$$< W<$$ , 1.0 (GeV/$$c^2$$ c )$$^2$$ 10.0 (GeV/$$< Q^2<$$ c ) and 0.01 (GeV/$$^2$$ c )$$^2$$ 0.5 (GeV/$$< p_{\textrm{T}}^2<$$ c ) . Here,$$^2$$ W denotes the mass of the final hadronic system, the virtuality of the exchanged photon, and$$Q^2$$ the transverse momentum of the$$p_{\textrm{T}}$$ meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\rho ^0$$ ) indicate a violation of$$\gamma ^*_T \rightarrow V^{ }_L$$ s -channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive production.$$\rho ^0$$ -
Abstract Let
M (x ) denote the largest cardinality of a subset of on which the Euler totient function$$\{n \in \mathbb {N}: n \le x\}$$ is nondecreasing. We show that$$\varphi (n)$$ for all$$M(x) = \left( 1+O\left( \frac{(\log \log x)^5}{\log x}\right) \right) \pi (x)$$ , answering questions of Erdős and Pollack–Pomerance–Treviño. A similar result is also obtained for the sum of divisors function$$x \ge 10$$ .$$\sigma (n)$$ -
Abstract Measurements of the associated production of a W boson and a charm (
) quark in proton–proton collisions at a centre-of-mass energy of 8$${\text {c}}$$ are reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7$$\,\text {TeV}$$ collected by the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm quark jets are selected using distinctive signatures of charm hadron decays. The product of the cross section and branching fraction$$\,\text {fb}^{-1}$$ , where$$\sigma (\text {p}\text {p}\rightarrow \text {W}+ {\text {c}}+ \text {X}) {\mathcal {B}}(\text {W}\rightarrow \ell \upnu )$$ or$$\ell = \text {e}$$ , and the cross section ratio$$\upmu $$ are measured in a fiducial volume and differentially as functions of the pseudorapidity and of the transverse momentum of the lepton from the W boson decay. The results are compared with theoretical predictions. The impact of these measurements on the determination of the strange quark distribution is assessed.$$\sigma (\text {p}\text {p}\rightarrow {{\text {W}}^{+} + \bar{{\text {c}}} + \text {X}}) / \sigma (\text {p}\text {p}\rightarrow {{\text {W}}^{-} + {\text {c}}+ \text {X}})$$ -
Abstract We prove that the Hilbert scheme of
k points on ($${\mathbb {C}}^2$$ ) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ -action. First, we find a two-parameter family$${\mathbb {C}}^\times _\hbar $$ of self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of$$X_{k,l}$$ is obtained via direct limit$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$l\longrightarrow \infty $$ -opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-$$\hbar $$ N sheaves on with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual.$${\mathbb {P}}^2$$