The free multiplicative Brownian motion
We propose a new observable for the measurement of the forward–backward asymmetry
 Award ID(s):
 2013791
 Publication Date:
 NSFPAR ID:
 10367820
 Journal Name:
 The European Physical Journal C
 Volume:
 82
 Issue:
 4
 ISSN:
 14346052
 Publisher:
 Springer Science + Business Media
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract is the large$$b_{t}$$ ${b}_{t}$N limit of the Brownian motion on in the sense of$$\mathsf {GL}(N;\mathbb {C}),$$ $\mathrm{GL}(N\u037eC),$ distributions. The natural candidate for the large$$*$$ $\ast $N limit of the empirical distribution of eigenvalues is thus the Brown measure of . In previous work, the second and third authors showed that this Brown measure is supported in the closure of a region$$b_{t}$$ ${b}_{t}$ that appeared in the work of Biane. In the present paper, we compute the Brown measure completely. It has a continuous density$$\Sigma _{t}$$ ${\Sigma}_{t}$ on$$W_{t}$$ ${W}_{t}$ which is strictly positive and real analytic on$$\overline{\Sigma }_{t},$$ ${\overline{\Sigma}}_{t},$ . This density has a simple form in polar coordinates:$$\Sigma _{t}$$ ${\Sigma}_{t}$ where$$\begin{aligned} W_{t}(r,\theta )=\frac{1}{r^{2}}w_{t}(\theta ), \end{aligned}$$ $\begin{array}{c}{W}_{t}(r,\theta )=\frac{1}{{r}^{2}}{w}_{t}\left(\theta \right),\end{array}$ is an analytic function determined by the geometry of the region$$w_{t}$$ ${w}_{t}$ . We show also that the spectral measure of free unitary Brownian motion$$\Sigma _{t}$$ ${\Sigma}_{t}$ is a “shadow” of the Brown measure of$$u_{t}$$ ${u}_{t}$ , precisely mirroring the relationship between the circular and semicircular laws. We develop several new methods, based on stochastic differential equations and PDE, to prove these results.$$b_{t}$$ ${b}_{t}$ 
Abstract A longstanding problem in mathematical physics is the rigorous derivation of the incompressible Euler equation from Newtonian mechanics. Recently, HanKwan and Iacobelli (Proc Am Math Soc 149:3045–3061, 2021) showed that in the monokinetic regime, one can directly obtain the Euler equation from a system of
N particles interacting in ,$${\mathbb {T}}^d$$ ${T}^{d}$ , via Newton’s second law through a$$d\ge 2$$ $d\ge 2$supercritical meanfield limit . Namely, the coupling constant in front of the pair potential, which is Coulombic, scales like$$\lambda $$ $\lambda $ for some$$N^{\theta }$$ ${N}^{\theta}$ , in contrast to the usual meanfield scaling$$\theta \in (0,1)$$ $\theta \in (0,1)$ . Assuming$$\lambda \sim N^{1}$$ $\lambda \sim {N}^{1}$ , they showed that the empirical measure of the system is effectively described by the solution to the Euler equation as$$\theta \in (1\frac{2}{d(d+1)},1)$$ $\theta \in (1\frac{2}{d(d+1)},1)$ . HanKwan and Iacobelli asked if their range for$$N\rightarrow \infty $$ $N\to \infty $ was optimal. We answer this question in the negative by showing the validity of the incompressible Euler equation in the limit$$\theta $$ $\theta $ for$$N\rightarrow \infty $$ $N\to \infty $ . Our proof is based on Serfaty’s modulatedenergy method, but compared to that of HanKwan and Iacobelli, crucially uses an improved “renormalized commutator” estimate to obtain the larger range for$$\theta \in (1\frac{2}{d},1)$$ $\theta \in (1\frac{2}{d},1)$ . Additionally, we show that for$$\theta $$ $\theta $ , one cannot, in general, expect convergence in the modulated energy notion of distance.$$\theta \le 1\frac{2}{d}$$ $\theta \le 1\frac{2}{d}$ 
Abstract We present a proof of concept for a spectrally selective thermal midIR source based on nanopatterned graphene (NPG) with a typical mobility of CVDgrown graphene (up to 3000
), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an$$\hbox {cm}^2\,\hbox {V}^{1}\,\hbox {s}^{1}$$ ${\text{cm}}^{2}\phantom{\rule{0ex}{0ex}}{\text{V}}^{1}\phantom{\rule{0ex}{0ex}}{\text{s}}^{1}$inplane electric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from to 12$$\lambda =3$$ $\lambda =3$ m by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming stateoftheart pristine graphene light sources operating in the nearinfrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$\upmu$$ $\mu $ W/$$11\times 10^3$$ $11\times {10}^{3}$ at$$\hbox {m}^2$$ ${\text{m}}^{2}$ K for a bias voltage of$$T=2000$$ $T=2000$ V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and derivingmore »$$V=23$$ $V=23$ 
Abstract Let us fix a prime
p and a homogeneous system ofm linear equations for$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ ${a}_{j,1}{x}_{1}+\cdots +{a}_{j,k}{x}_{k}=0$ with coefficients$$j=1,\dots ,m$$ $j=1,\cdots ,m$ . Suppose that$$a_{j,i}\in \mathbb {F}_p$$ ${a}_{j,i}\in {F}_{p}$ , that$$k\ge 3m$$ $k\ge 3m$ for$$a_{j,1}+\dots +a_{j,k}=0$$ ${a}_{j,1}+\cdots +{a}_{j,k}=0$ and that every$$j=1,\dots ,m$$ $j=1,\cdots ,m$ minor of the$$m\times m$$ $m\times m$ matrix$$m\times k$$ $m\times k$ is nonsingular. Then we prove that for any (large)$$(a_{j,i})_{j,i}$$ ${\left({a}_{j,i}\right)}_{j,i}$n , any subset of size$$A\subseteq \mathbb {F}_p^n$$ $A\subseteq {F}_{p}^{n}$ contains a solution$$A> C\cdot \Gamma ^n$$ $\leftA\right>C\xb7{\Gamma}^{n}$ to the given system of equations such that the vectors$$(x_1,\dots ,x_k)\in A^k$$ $({x}_{1},\cdots ,{x}_{k})\in {A}^{k}$ are all distinct. Here,$$x_1,\dots ,x_k\in A$$ ${x}_{1},\cdots ,{x}_{k}\in A$C and are constants only depending on$$\Gamma $$ $\Gamma $p ,m andk such that . The crucial point here is the condition for the vectors$$\Gamma $\Gamma <p$
in the solution$$x_1,\dots ,x_k$$ ${x}_{1},\cdots ,{x}_{k}$ to be distinct. If we relax this condition and only demand that$$(x_1,\dots ,x_k)\in A^k$$ $({x}_{1},\cdots ,{x}_{k})\in {A}^{k}$ are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a nondiagonal tensor in combination with combinatorial and probabilistic arguments.$$x_1,\dots ,x_k$$ ${x}_{1},\cdots ,{x}_{k}$ 
Abstract The proximity of many strongly correlated superconductors to densitywave or nematic order has led to an extensive search for fingerprints of pairing mediated by dynamical quantumcritical (QC) fluctuations of the corresponding order parameter. Here we study anisotropic
s wave superconductivity induced by anisotropic QC dynamical nematic fluctuations. We solve the nonlinear gap equation for the pairing gap and show that its angular dependence strongly varies below$$\Delta (\theta ,{\omega }_{m})$$ $\Delta \left(\theta ,{\omega}_{m}\right)$ . We show that this variation is a signature of QC pairing and comes about because there are multiple$${T}_{{\rm{c}}}$$ ${T}_{c}$s wave pairing instabilities with closely spaced transition temperatures . Taken alone, each instability would produce a gap$${T}_{{\rm{c}},n}$$ ${T}_{c,n}$ that changes sign$$\Delta (\theta ,{\omega }_{m})$$ $\Delta \left(\theta ,{\omega}_{m}\right)$ times along the Fermi surface. We show that the equilibrium gap$$8n$$ $8n$ is a superposition of multiple components that are nonlinearly induced below the actual$$\Delta (\theta ,{\omega }_{m})$$ $\Delta (\theta ,{\omega}_{m})$ , and get resonantly enhanced at$${T}_{{\rm{c}}}={T}_{{\rm{c}},0}$$ ${T}_{c}={T}_{c,0}$ . This gives rise to strong temperature variation of the angular dependence of$$T={T}_{{\rm{c}},n}\ <\ {T}_{{\rm{c}}}$$ $T={T}_{c,n}\phantom{\rule{0ex}{0ex}}<\phantom{\rule{0ex}{0ex}}{T}_{c}$ . This variation progressively disappears away from a QC point.$$\Delta (\theta ,{\omega }_{m})$$ $\Delta \left(\theta ,{\omega}_{m}\right)$