A longstanding problem in mathematical physics is the rigorous derivation of the incompressible Euler equation from Newtonian mechanics. Recently, HanKwan and Iacobelli (Proc Am Math Soc 149:3045–3061, 2021) showed that in the monokinetic regime, one can directly obtain the Euler equation from a system of
We propose a new observable for the measurement of the forward–backward asymmetry
 Award ID(s):
 2013791
 NSFPAR ID:
 10367820
 Publisher / Repository:
 Springer Science + Business Media
 Date Published:
 Journal Name:
 The European Physical Journal C
 Volume:
 82
 Issue:
 4
 ISSN:
 14346052
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract N particles interacting in ,$${\mathbb {T}}^d$$ ${T}^{d}$ , via Newton’s second law through a$$d\ge 2$$ $d\ge 2$supercritical meanfield limit . Namely, the coupling constant in front of the pair potential, which is Coulombic, scales like$$\lambda $$ $\lambda $ for some$$N^{\theta }$$ ${N}^{\theta}$ , in contrast to the usual meanfield scaling$$\theta \in (0,1)$$ $\theta \in (0,1)$ . Assuming$$\lambda \sim N^{1}$$ $\lambda \sim {N}^{1}$ , they showed that the empirical measure of the system is effectively described by the solution to the Euler equation as$$\theta \in (1\frac{2}{d(d+1)},1)$$ $\theta \in (1\frac{2}{d(d+1)},1)$ . HanKwan and Iacobelli asked if their range for$$N\rightarrow \infty $$ $N\to \infty $ was optimal. We answer this question in the negative by showing the validity of the incompressible Euler equation in the limit$$\theta $$ $\theta $ for$$N\rightarrow \infty $$ $N\to \infty $ . Our proof is based on Serfaty’s modulatedenergy method, but compared to that of HanKwan and Iacobelli, crucially uses an improved “renormalized commutator” estimate to obtain the larger range for$$\theta \in (1\frac{2}{d},1)$$ $\theta \in (1\frac{2}{d},1)$ . Additionally, we show that for$$\theta $$ $\theta $ , one cannot, in general, expect convergence in the modulated energy notion of distance.$$\theta \le 1\frac{2}{d}$$ $\theta \le 1\frac{2}{d}$ 
Abstract The free multiplicative Brownian motion
is the large$$b_{t}$$ ${b}_{t}$N limit of the Brownian motion on in the sense of$$\mathsf {GL}(N;\mathbb {C}),$$ $\mathrm{GL}(N\u037eC),$ distributions. The natural candidate for the large$$*$$ $\ast $N limit of the empirical distribution of eigenvalues is thus the Brown measure of . In previous work, the second and third authors showed that this Brown measure is supported in the closure of a region$$b_{t}$$ ${b}_{t}$ that appeared in the work of Biane. In the present paper, we compute the Brown measure completely. It has a continuous density$$\Sigma _{t}$$ ${\Sigma}_{t}$ on$$W_{t}$$ ${W}_{t}$ which is strictly positive and real analytic on$$\overline{\Sigma }_{t},$$ ${\overline{\Sigma}}_{t},$ . This density has a simple form in polar coordinates:$$\Sigma _{t}$$ ${\Sigma}_{t}$ where$$\begin{aligned} W_{t}(r,\theta )=\frac{1}{r^{2}}w_{t}(\theta ), \end{aligned}$$ $\begin{array}{c}{W}_{t}(r,\theta )=\frac{1}{{r}^{2}}{w}_{t}\left(\theta \right),\end{array}$ is an analytic function determined by the geometry of the region$$w_{t}$$ ${w}_{t}$ . We show also that the spectral measure of free unitary Brownian motion$$\Sigma _{t}$$ ${\Sigma}_{t}$ is a “shadow” of the Brown measure of$$u_{t}$$ ${u}_{t}$ , precisely mirroring the relationship between the circular and semicircular laws. We develop several new methods, based on stochastic differential equations and PDE, to prove these results.$$b_{t}$$ ${b}_{t}$ 
Abstract Let us fix a prime
p and a homogeneous system ofm linear equations for$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ ${a}_{j,1}{x}_{1}+\cdots +{a}_{j,k}{x}_{k}=0$ with coefficients$$j=1,\dots ,m$$ $j=1,\cdots ,m$ . Suppose that$$a_{j,i}\in \mathbb {F}_p$$ ${a}_{j,i}\in {F}_{p}$ , that$$k\ge 3m$$ $k\ge 3m$ for$$a_{j,1}+\dots +a_{j,k}=0$$ ${a}_{j,1}+\cdots +{a}_{j,k}=0$ and that every$$j=1,\dots ,m$$ $j=1,\cdots ,m$ minor of the$$m\times m$$ $m\times m$ matrix$$m\times k$$ $m\times k$ is nonsingular. Then we prove that for any (large)$$(a_{j,i})_{j,i}$$ ${\left({a}_{j,i}\right)}_{j,i}$n , any subset of size$$A\subseteq \mathbb {F}_p^n$$ $A\subseteq {F}_{p}^{n}$ contains a solution$$A> C\cdot \Gamma ^n$$ $\leftA\right>C\xb7{\Gamma}^{n}$ to the given system of equations such that the vectors$$(x_1,\dots ,x_k)\in A^k$$ $({x}_{1},\cdots ,{x}_{k})\in {A}^{k}$ are all distinct. Here,$$x_1,\dots ,x_k\in A$$ ${x}_{1},\cdots ,{x}_{k}\in A$C and are constants only depending on$$\Gamma $$ $\Gamma $p ,m andk such that . The crucial point here is the condition for the vectors$$\Gamma $\Gamma <p$
in the solution$$x_1,\dots ,x_k$$ ${x}_{1},\cdots ,{x}_{k}$ to be distinct. If we relax this condition and only demand that$$(x_1,\dots ,x_k)\in A^k$$ $({x}_{1},\cdots ,{x}_{k})\in {A}^{k}$ are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a nondiagonal tensor in combination with combinatorial and probabilistic arguments.$$x_1,\dots ,x_k$$ ${x}_{1},\cdots ,{x}_{k}$ 
Abstract The elliptic flow
of$$(v_2)$$ $\left({v}_{2}\right)$ mesons from beautyhadron decays (nonprompt$${\textrm{D}}^{0}$$ ${\text{D}}^{0}$ was measured in midcentral (30–50%) Pb–Pb collisions at a centreofmass energy per nucleon pair$${\textrm{D}}^{0})$$ ${\text{D}}^{0})$ TeV with the ALICE detector at the LHC. The$$\sqrt{s_{\textrm{NN}}} = 5.02$$ $\sqrt{{s}_{\text{NN}}}=5.02$ mesons were reconstructed at midrapidity$${\textrm{D}}^{0}$$ ${\text{D}}^{0}$ from their hadronic decay$$(y<0.8)$$ $\left(\righty<0.8)$ , in the transverse momentum interval$$\mathrm {D^0 \rightarrow K^\uppi ^+}$$ ${D}^{0}\to {K}^{}{\pi}^{+}$ GeV/$$2< p_{\textrm{T}} < 12$$ $2<{p}_{\text{T}}<12$c . The result indicates a positive for nonprompt$$v_2$$ ${v}_{2}$ mesons with a significance of 2.7$${{\textrm{D}}^{0}}$$ ${\text{D}}^{0}$ . The nonprompt$$\sigma $$ $\sigma $ meson$${{\textrm{D}}^{0}}$$ ${\text{D}}^{0}$ is lower than that of prompt nonstrange D mesons with 3.2$$v_2$$ ${v}_{2}$ significance in$$\sigma $$ $\sigma $ , and compatible with the$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ $2<{p}_{\text{T}}<8\phantom{\rule{0ex}{0ex}}\text{GeV}/c$ of beautydecay electrons. Theoretical calculations of beautyquark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.$$v_2$$ ${v}_{2}$ 
Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive
meson muoproduction at COMPASS using 160 GeV/$$\rho ^0$$ ${\rho}^{0}$c polarised and$$ \mu ^{+}$$ ${\mu}^{+}$ beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$ \mu ^{}$$ ${\mu}^{}$$$c^2$$ ${c}^{2}$ 17.0 GeV/$$< W<$$ $<W<$ , 1.0 (GeV/$$c^2$$ ${c}^{2}$c )$$^2$$ ${}^{2}$ 10.0 (GeV/$$< Q^2<$$ $<{Q}^{2}<$c ) and 0.01 (GeV/$$^2$$ ${}^{2}$c )$$^2$$ ${}^{2}$ 0.5 (GeV/$$< p_{\textrm{T}}^2<$$ $<{p}_{\text{T}}^{2}<$c ) . Here,$$^2$$ ${}^{2}$W denotes the mass of the final hadronic system, the virtuality of the exchanged photon, and$$Q^2$$ ${Q}^{2}$ the transverse momentum of the$$p_{\textrm{T}}$$ ${p}_{\text{T}}$ meson with respect to the virtualphoton direction. The measured nonzero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\rho ^0$$ ${\rho}^{0}$ ) indicate a violation of$$\gamma ^*_T \rightarrow V^{ }_L$$ ${\gamma}_{T}^{\ast}\to {V}_{L}^{}$s channel helicity conservation. Additionally, we observe a dominant contribution of naturalparityexchange transitions and a very small contribution of unnaturalparityexchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a modeldependent way the role of parton helicityflip GPDs in exclusive production.$$\rho ^0$$ ${\rho}^{0}$