skip to main content


Title: Examining polymer‐protein biophysical interactions with small‐angle x‐ray scattering and quartz crystal microbalance with dissipation
Abstract

Polymer‐protein hybrids can be deployed to improve protein solubility and stability in denaturing environments. While previous work used robotics and active machine learning to inform new designs, further biophysical information is required to ascertain structure–function behavior. Here, we show the value of tandem small‐angle x‐ray scattering (SAXS) and quartz crystal microbalance with dissipation (QCMD) experiments to reveal detailed polymer‐protein interactions with horseradish peroxidase (HRP) as a test case. Of particular interest was the process of polymer‐protein complex formation under thermal stress whereby SAXS monitors formation in solution while QCMD follows these dynamics at an interface. The radius of gyration (Rg) of the protein as measured by SAXS does not change significantly in the presence of polymer under denaturing conditions, but thickness and dissipation changes were observed in QCMD data. SAXS data with and without thermal stress were utilized to create bead models of the potential complexes and denatured enzyme, and each model fit provided insight into the degree of interactions. Additionally, QCMD data demonstrated that HRP deforms by spreading upon surface adsorption at low concentration as shown by longer adsorption times and smaller frequency shifts. In contrast, thermally stressed and highly inactive HRP had faster adsorption kinetics. The combination of SAXS and QCMD serves as a framework for biophysical characterization of interactions between proteins and polymers which could be useful in designing polymer‐protein hybrids.

 
more » « less
Award ID(s):
2009942 2118860
NSF-PAR ID:
10394544
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Biomedical Materials Research Part A
Volume:
111
Issue:
4
ISSN:
1549-3296
Page Range / eLocation ID:
p. 440-450
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Statement of Purpose Hybrid nanoparticles in which a polymer is used to stabilize the secondary structure of enzyme provide a means to preserve its activity in non-native environments. This approach is illustrated here with horseradish peroxidase (HRP), an important heme enzyme used in medical diagnostic, biosensing, and biotechnological applications. Polymer chaperones in these polymer-enzyme complex (PEC) nanoparticles can enhance the utility of enzymes in unfavorable environments. Structural analysis of the PECs is a crucial link in the machine-learning driven iterative optimization cycle of polymer synthesis and testing. Here, we discuss the utility of small-angle X-ray scattering (SAXS) and quartz crystal microbalance with dissipation (QCMD) for evaluating PECs. Materials and Methods Six polymers were synthesized by automated photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization directly in 96-well plates.1 Multiple molar ratios of enzyme:polymer (1:1, 1:5, 1:10, and 1:50) were characterized. HRP was mixed with the polymer and heated to 65 °C for 1 hr to form PECs. Enzyme assay and circular dichroism measurements were performed along with SAXS and QCMD to understand polymer-protein interactions. SAXS data were obtained at NSLS-II beamline 16-ID. Results and Discussion SAXS data were analyzed to determine the radius of gyration (Rg), Porod exponent and pair distance distribution functions (P(r)) (Figure 1). Rg, which corresponds to the size of the PEC nanoparticles, is sensitive to the polydispersity of the solution and does not change significantly in the presence of the polymer GEP1. Notably, the maximal dimension does not change as significantly upon heating to denaturation in the case of the PEC as it does with HRP alone. The effect of denaturation induced by heating seems to depend on the molar ratio of the polymer to enzyme. The Porod exponent, which is related to roughness, decreased from about 4 to 3 upon complexation indicating polymer binding to the enzyme’s surface. These were confirmed by modeling the structures of the HRP, the polymer and the PEC were modeled using DAMMIF/DAMMIN and MONSA (ATSAS software). The changes observed in the structure could be correlated to the measured enzymatic activity. Figure 2 shows the evolution of the PEC when the polymer is deposited onto the enzyme immobilized on Figure 1. P(r) plots for PEC vs. HRP before and after heating, illustrating the increased enzymatic stability due to polymer additives. gold-coated QCM sensors. The plots show the changes in frequency (f) and dissipation (D) with time as HRP is first deposited and is followed by the adsorption of the polymer. Large f and D show that the polymer forms a complex with HRP. Such changes were not observed with negative controls, Pluronics and poly(ethylene glycol). Comparison of the data from free particles in solution with QCM data from immobilized enzymes, shows that the conformation of the complexes in solution and surface-bound HRP could be different. This way, we were able to explore the various states of complex formation under different conditions with different polymers. Figure 2. QCMD data showing the interaction between the immobilized HRP and the polymer. 3rd and 5th harmonics are plotted (blue -f; red-D). Conclusion SAXS and QCMD data show that stabilization of the enzyme activity by inhibiting the unraveling of the secondary structure as seen in size, surface roughness, pair distribution function and percent helicity. Acknowledgment This work was supported by NSF grant 2009942. References [1] Tamasi, M, et al. Adv Intell Syst 2020, 2(2): 1900126. 
    more » « less
  2. Abstract

    Polymer–protein hybrids are intriguing materials that can bolster protein stability in non‐native environments, thereby enhancing their utility in diverse medicinal, commercial, and industrial applications. One stabilization strategy involves designing synthetic random copolymers with compositions attuned to the protein surface, but rational design is complicated by the vast chemical and composition space. Here, a strategy is reported to design protein‐stabilizing copolymers based on active machine learning, facilitated by automated material synthesis and characterization platforms. The versatility and robustness of the approach is demonstrated by the successful identification of copolymers that preserve, or even enhance, the activity of three chemically distinct enzymes following exposure to thermal denaturing conditions. Although systematic screening results in mixed success, active learning appropriately identifies unique and effective copolymer chemistries for the stabilization of each enzyme. Overall, this work broadens the capabilities to design fit‐for‐purpose synthetic copolymers that promote or otherwise manipulate protein activity, with extensions toward the design of robust polymer–protein hybrid materials.

     
    more » « less
  3. Abstract

    This work discusses the effect of isopropyl phosphate (IP) on the transport properties of sulfonated poly(styrene‐isobutylene‐styrene) (SO3H SIBS) as membranes for direct methanol fuel cell (DMFC) and chemical and biological protective clothing (CBPC) applications. The properties were determined as a function of SIBS sulfonation level (i.e., 24, 34, 49, and 84 mol %) and IP loading (i.e., 1, 3, 5, 11, and 15 wt %). A comprehensive material characterization study (e.g.,FTIR, TGA, AFM, and SAXS) was performed to confirm the presence of the phosphate groups in the polymer matrix, assess the thermal stability of the proton‐exchange membranes (PEMs), and understand how the unique interactions between the phosphate and sulfonic groups influenced the nanostructure of SO3H SIBS. The transport properties, water absorption capabilities (i.e.,swelling ratio, water uptake, etc.), oxidative stability, and ion‐exchange capacity (IEC) were performed to evaluate the impact of IP on the properties of the resulting solvent‐casted membranes. Results suggest that the morphology, thermal stability, and vapor permeability are governed by the sulfonation level, whereas the IEC, oxidative stability, water absorption capabilities, and the rest of the transport properties are dominated by the ionic content (i.e.,sulfonic and phosphate groups) and their synergistic effects. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,136, 47009.

     
    more » « less
  4. null (Ed.)
    Supported lipid bilayers (SLBs) have proven to be valuable model systems for studying the interactions of proteins, peptides, and nanoparticles with biological membranes. The physicochemical properties (e.g., topography, coating) of the solid substrate may affect the formation and properties of supported phospholipid bilayers, and thus, subsequent interactions with biomolecules or nanoparticles. Here, we examine the influence of support coating (SiO2 vs Si3N4) and topography [sensors with embedded vs protruding gold nanodisks for nanoplasmonic sensing (NPS)] on the formation and subsequent interactions of supported phospholipid bilayers with the model protein cytochrome c and with cationic polymer-wrapped quantum dots using quartz crystal microbalance with dissipation monitoring and NPS techniques. The specific protein and nanoparticle were chosen because they differ in the degree to which they penetrate the bilayer. We find that bilayer formation and subsequent non-penetrative association with cytochrome c were not significantly influenced by substrate composition or topography. In contrast, the interactions of nanoparticles with SLBs depended on the substrate composition. The substrate-dependence of nanoparticle adsorption is attributed to the more negative zeta-potential of the bilayers supported by the silica vs the silicon nitride substrate and to the penetration of the cationic polymer wrapping the nanoparticles into the bilayer. Our results indicate that the degree to which nanoscale analytes interact with SLBs may be influenced by the underlying substrate material. 
    more » « less
  5. Abstract

    Ammonia is a widely used toxic industrial chemical that can cause severe respiratory ailments. Therefore, understanding and developing materials for its efficient capture and controlled release is necessary. One such class of materials is 3D porous metal‐organic frameworks (MOFs) with exceptional surface areas and robust structures, ideal for gas storage/transport applications. Herein, interactions between ammonia and UiO‐67‐X (X: H, NH2, CH3) zirconium MOFs were studied under cryogenic, ultrahigh vacuum (UHV) conditions using temperature‐programmed desorption mass spectrometry (TPD‐MS) and in‐situ temperature‐programmed infrared (TP‐IR) spectroscopy. Ammonia was observed to interact with μ3−OH groups present on the secondary building unit of UiO‐67‐X MOFs via hydrogen bonding. TP‐IR studies revealed that under cryogenic UHV conditions, UiO‐67‐X MOFs are stable towards ammonia sorption. Interestingly, an increase in the intensity of the C−H stretching mode of the MOF linkers was detected upon ammonia exposure, attributed to NH−π interactions with linkers. These same binding interactions were observed in grand canonical Monte Carlo simulations. Based on TPD‐MS, binding strength of ammonia to three MOFs was determined to be approximately 60 kJ mol−1, suggesting physisorption of ammonia to UiO‐67‐X. In addition, missing linker defect sites, consisting of H2O coordinated to Zr4+sites, were detected through the formation ofnNH3⋅H2O clusters, characterized through in‐situ IR spectroscopy. Structures consistent with these assignments were identified through density functional theory calculations. Tracking these bands through adsorption on thermally activated MOFs gave insight into the dehydroxylation process of UiO‐67 MOFs. This highlights an advantage of using NH3for the structural analysis of MOFs and developing an understanding of interactions between ammonia and UiO‐67‐X zirconium MOFs, while also providing directions for the development of stable materials for efficient toxic gas sorption.

     
    more » « less