Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Polymer‐protein hybrids can be deployed to improve protein solubility and stability in denaturing environments. While previous work used robotics and active machine learning to inform new designs, further biophysical information is required to ascertain structure–function behavior. Here, we show the value of tandem small‐angle x‐ray scattering (SAXS) and quartz crystal microbalance with dissipation (QCMD) experiments to reveal detailed polymer‐protein interactions with horseradish peroxidase (HRP) as a test case. Of particular interest was the process of polymer‐protein complex formation under thermal stress whereby SAXS monitors formation in solution while QCMD follows these dynamics at an interface. The radius of gyration (Rg) of the protein as measured by SAXS does not change significantly in the presence of polymer under denaturing conditions, but thickness and dissipation changes were observed in QCMD data. SAXS data with and without thermal stress were utilized to create bead models of the potential complexes and denatured enzyme, and each model fit provided insight into the degree of interactions. Additionally, QCMD data demonstrated that HRP deforms by spreading upon surface adsorption at low concentration as shown by longer adsorption times and smaller frequency shifts. In contrast, thermally stressed and highly inactive HRP had faster adsorption kinetics. The combination of SAXS and QCMD serves as a framework for biophysical characterization of interactions between proteins and polymers which could be useful in designing polymer‐protein hybrids.more » « less
-
Abstract Polymer–protein hybrids are intriguing materials that can bolster protein stability in non‐native environments, thereby enhancing their utility in diverse medicinal, commercial, and industrial applications. One stabilization strategy involves designing synthetic random copolymers with compositions attuned to the protein surface, but rational design is complicated by the vast chemical and composition space. Here, a strategy is reported to design protein‐stabilizing copolymers based on active machine learning, facilitated by automated material synthesis and characterization platforms. The versatility and robustness of the approach is demonstrated by the successful identification of copolymers that preserve, or even enhance, the activity of three chemically distinct enzymes following exposure to thermal denaturing conditions. Although systematic screening results in mixed success, active learning appropriately identifies unique and effective copolymer chemistries for the stabilization of each enzyme. Overall, this work broadens the capabilities to design fit‐for‐purpose synthetic copolymers that promote or otherwise manipulate protein activity, with extensions toward the design of robust polymer–protein hybrid materials.more » « less
-
Oxygen tolerant polymerizations including Photoinduced Electron/Energy Transfer-Reversible Addition–Fragmentation Chain-Transfer (PET-RAFT) polymerization allow for high-throughput synthesis of diverse polymer architectures on the benchtop in parallel. Recent developments have further increased throughput using liquid handling robotics to automate reagent handling and dispensing into well plates thus enabling the combinatorial synthesis of large polymer libraries. Although liquid handling robotics can enable automated polymer reagent dispensing in well plates, photoinitiation and reaction monitoring require automation to provide a platform that enables the reliable and robust synthesis of various polymer compositions in high-throughput where polymers with desired molecular weights and low dispersity are obtained. Here, we describe the development of a robotic platform to fully automate PET-RAFT polymerizations and provide individual control of reactions performed in well plates. On our platform, reagents are automatically dispensed in well plates, photoinitiated in individual wells with a custom-designed lightbox until the polymerizations are complete, and monitored online in real-time by tracking fluorescence intensities on a fluorescence plate reader, with well plate transfers between instruments occurring via a robotic arm. We found that this platform enabled robust parallel polymer synthesis of both acrylate and acrylamide homopolymers and copolymers, with high monomer conversions and low dispersity. The successful polymerizations obtained on this platform make it an efficient tool for combinatorial polymer chemistry. In addition, with the inclusion of machine learning protocols to help navigate the polymer space towards specific properties of interest, this robotic platform can ultimately become a self-driving lab that can dispense, synthesize, and monitor large polymer libraries.more » « less
-
The functional structure of proteins is heavily influenced by their folding behavior. AlphaFold, a powerful artificial intelligence (AI) program trained on information from the Protein Data Bank (PDB), was developed to predict the 3D structure of proteins from its amino acid sequence. Inspired by this, we aim to elucidate structural features of synthetic single-chain polymer nanoparticles (SCNPs) based on compositional information (monomers, chain length, molecular weight, charge, and valency) by machine learning (ML). Specifically, we demonstrate the effectiveness of ML to improve the efficiency of SCNP design and uncover important polymer design attributes to mimic protein-like structural features. To start, we randomly screened over 1000 synthesized SCNPs through a combination of high-throughput dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) and compared these results to simulated protein data from the PDB. Then, utilizing evidential neural networks (ENets), we predicted, synthesized, and characterized 30 novel compact SCNPs. Incredibly, this data-driven approach yielded 58% of the predicted SCNPs with Porod exponent ≥ 3.5 as opposed to 5% of SCNPs from the random screen. Using Shapely additive explanation (SHAP) values, we further uncovered interesting contributions of monomer content on Porod exponent and radius of gyration. From this work, we have shown that an ML-guided approach proves effective for the challenging, unintuitive problem of nanoparticle design.more » « less
An official website of the United States government

Full Text Available