skip to main content


Title: Magnetic Energy Dissipation and γ-Ray Emission in Energetic Pulsars
Abstract

Some of the most energetic pulsars exhibit rotation-modulatedγ-ray emission in the 0.1–100 GeV band. The luminosity of this emission is typically 0.1%–10% of the pulsar spin-down power (γ-ray efficiency), implying that a significant fraction of the available electromagnetic energy is dissipated in the magnetosphere and reradiated as high-energy photons. To investigate this phenomenon we model a pulsar magnetosphere using 3D particle-in-cell simulations with strong synchrotron cooling. We particularly focus on the dynamics of the equatorial current sheet where magnetic reconnection and energy dissipation take place. Our simulations demonstrate that a fraction of the spin-down power dissipated in the magnetospheric current sheet is controlled by the rate of magnetic reconnection at microphysical plasma scales and only depends on the pulsar inclination angle. We demonstrate that the maximum energy and the distribution function of accelerated pairs is controlled by the available magnetic energy per particle near the current sheet, the magnetization parameter. The shape and the extent of the plasma distribution is imprinted in the observed synchrotron emission, in particular, in the peak and the cutoff of the observed spectrum. We study how the strength of synchrotron cooling affects the observed variety of spectral shapes. Our conclusions naturally explain why pulsars with higher spin-down power have wider spectral shapes and, as a result, lowerγ-ray efficiency.

 
more » « less
Award ID(s):
2206610 2206607
NSF-PAR ID:
10394570
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
943
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 105
Size(s):
["Article No. 105"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the results of 3D particle-in-cell simulations that explore relativistic magnetic reconnection in pair plasma with strong synchrotron cooling and a small mass fraction of nonradiating ions. Our results demonstrate that the structure of the current sheet is highly sensitive to the dynamic efficiency of radiative cooling. Specifically, stronger cooling leads to more significant compression of the plasma and magnetic field within the plasmoids. We demonstrate that ions can be efficiently accelerated to energies exceeding the plasma magnetization parameter, ≫σ, and form a hard power-law energy distribution,fiγ−1. This conclusion implies a highly efficient proton acceleration in the magnetospheres of young pulsars. Conversely, the energies of pairs are limited to eitherσin the strong cooling regime or the radiation burnoff limit,γsyn, when cooling is weak. We find that the high-energy radiation from pairs above the synchrotron burnoff limit,εc≈ 16 MeV, is only efficiently produced in the strong cooling regime,γsyn<σ. In this regime, we find that the spectral cutoff scales asεcutεc(σ/γsyn) and the highest energy photons are beamed along the direction of the upstream magnetic field, consistent with the phenomenological models of gamma-ray emission from young pulsars. Furthermore, our results place constraints on the reconnection-driven models of gamma-ray flares in the Crab Nebula.

     
    more » « less
  2. Context. Accreting black holes (BHs) may be surrounded by a highly magnetized plasma threaded by an organized poloidal magnetic field. Nonthermal flares and power-law spectral components at high energy could originate from a hot, collisionless, and nearly force-free corona. The jets we often observe from these systems are believed to be rotation-powered and magnetically driven. Aims. We study axisymmetric BH magnetospheres, where a fraction of the magnetic field lines anchored in a surrounding disk are connected to the event horizon of a rotating BH. For different BH spins, we identify the conditions and sites of magnetic reconnection within 30 gravitational radii. Methods. With the fully general relativistic particle-in-cell code GRZeltron , we solve the time-dependent dynamics of the electron–positron pair plasma and of the electromagnetic fields around the BH. The aligned disk is represented by a steady and perfectly conducting plasma in Keplerian rotation, threaded by a dipolar magnetic field. Results. For prograde disks around Kerr BHs, the topology of the magnetosphere is hybrid. Twisted open magnetic field lines crossing the horizon power a Blandford-Znajek jet, while open field lines with their footpoint beyond a critical distance on the disk could launch a magneto-centrifugal wind. In the innermost regions, coupling magnetic field lines ensure the transfer of significant amounts of angular momentum and energy between the BH and the disk. From the Y point at the intersection of these three regions, a current sheet forms where vivid particle acceleration via magnetic reconnection takes place. We compute the synchrotron images of the current sheet emission. Conclusions. Our estimates for jet power and BH–disk exchanges match those derived from purely force-free models. Particles are accelerated at the Y point, which acts as a heat source for the so-called corona. It provides a physically motivated ring-shaped source of hard X-rays above the disk for reflection models. Episodic plasmoid ejection might explain millisecond flares observed in Cygnus X-1 in the high-soft state, but are too fast to account for daily nonthermal flares from Sgr A * . Particles flowing from the Y point down to the disk could produce a hot spot at the footpoint of the outermost closed magnetic field line. 
    more » « less
  3. Abstract

    We present a global kinetic plasma simulation of an axisymmetric pulsar magnetosphere with self-consistente±pair production. We use the particle-in-cell method and log-spherical coordinates with a grid size 4096 × 4096. This allows us to achieve a high voltage induced by the pulsar rotation and investigate pair creation in a young pulsar far from the death line. We find the following: (1) The energy release ande±creation are strongly concentrated in the thin, Y-shaped current sheet, with a peak localized in a small volume at the Y-point. (2) The Y-point is shifted inward from the light cylinder by ∼15% and “breathes” with a small amplitude. (3) The densee±cloud at the Y-point is in ultrarelativistic rotation, which we call superrotation, because it exceeds corotation with the star. The cloud receives angular momentum flowing from the star along the poloidal magnetic field lines. (4) Gamma-ray emission peaks at the Y-point and is collimated in the azimuthal direction, tangent to the Y-point circle. (5) The separatrix current sheet between the closed magnetosphere and the open magnetic field lines is sustained by the electron backflow from the Y-point cloud. Its thickness is self-regulated to marginal charge starvation. (6) Only a small fraction of dissipation occurs in the separatrix inward of the Y-point. A much higher power is released in the equatorial plane, including the Y-point where the created densee±plasma is spun up and intermittently ejected through the nozzle between the two open magnetic fluxes.

     
    more » « less
  4. Abstract Extended very-high-energy (VHE; 0.1–100 TeV) γ -ray emission has been observed around several middle-aged pulsars and referred to as “TeV halos.” Their formation mechanism remains under debate. It is also unknown whether they are ubiquitous or related to a certain subgroup of pulsars. With 2321 days of observation, the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory detected VHE γ -ray emission at the location of the radio-quiet pulsar PSR J0359+5414 with >6 σ significance. By performing likelihood tests with different spectral and spatial models and comparing the TeV spectrum with multiwavelength observations of nearby sources, we show that this excess is consistent with a TeV halo associated with PSR J0359+5414, though future observation of HAWC and multiwavelength follow-ups are needed to confirm this nature. This new halo candidate is located in a noncrowded region in the outer galaxy. It shares similar properties to the other halos but its pulsar is younger and radio-quiet. Our observation implies that TeV halos could commonly exist around pulsars and their formation does not depend on the configuration of the pulsar magnetosphere. 
    more » « less
  5. ABSTRACT

    The time evolution of high-energy synchrotron radiation generated in a relativistic pair plasma energized by reconnection of strong magnetic fields is investigated with 2D and 3D particle-in-cell (PIC) simulations. The simulations in this 2D/3D comparison study are conducted with the radiative PIC code OSIRIS, which self-consistently accounts for the synchrotron radiation reaction on the emitting particles, and enables us to explore the effects of synchrotron cooling. Magnetic reconnection causes compression of the plasma and magnetic field deep inside magnetic islands (plasmoids), leading to an enhancement of the flaring emission, which may help explain some astrophysical gamma-ray flare observations. Although radiative cooling weakens the emission from plasmoid cores, it facilitates additional compression there, further amplifying the magnetic field B and plasma density n, and thus partially mitigating this effect. Novel simulation diagnostics utilizing 2D histograms in the n-B space are developed and used to visualize and quantify the effects of compression. The n-B histograms are observed to be bounded by relatively sharp power-law boundaries marking clear limits on compression. Theoretical explanations for some of these compression limits are developed, rooted in radiative resistivity or 3D kinking instabilities. Systematic parameter-space studies with respect to guide magnetic field, system size, and upstream magnetization are conducted and suggest that stronger compression, brighter high-energy radiation, and perhaps significant quantum electrodynamic effects such as pair production, may occur in environments with larger reconnection-region sizes and higher magnetization, particularly when magnetic field strengths approach the critical (Schwinger) field, as found in magnetar magnetospheres.

     
    more » « less