skip to main content


Title: High abundance of human herpesvirus 8 in wastewater from a large urban area
Abstract Aims

This study assesses the diversity and abundance of Human Herpesviruses (HHVs) in the influent of an urban wastewater treatment plant using shotgun sequencing, metagenomic analysis and qPCR.

Methods and Results

Influent wastewater samples were collected from the three interceptors that serve the City of Detroit and Wayne, Macomb and Oakland counties between November 2017 to February 2018. The samples were subjected to a series of processes to concentrate viruses which were further sequenced and amplified using qPCR. All nine types of HHV were detected in wastewater. Human Herpesvirus 8 (HHV-8), known as Kaposi’s sarcoma herpesvirus, which is only prevalent in 5–10% of USA population, was found to be the most abundant followed by HHV-3 or Varicella-zoster virus.

Conclusions

The high abundance of HHV-8 in the Detroit metropolitan area may be attributed to the HIV-AIDS outbreak that was ongoing in Detroit during the sampling period.

Significance and Impact of the Study

The approach described in this paper can be used to establish a baseline of viruses secreted by the community as a whole. Sudden changes in the baseline would identify changes in community health and immunity.

 
more » « less
NSF-PAR ID:
10394722
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Applied Microbiology
Volume:
130
Issue:
5
ISSN:
1364-5072
Page Range / eLocation ID:
p. 1402-1411
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wastewater surveillance has proven to be an effective tool to monitor the transmission and emergence of infectious agents at a community scale. Workflows for wastewater surveillance generally rely on concentration steps to increase the probability of detection of low-abundance targets, but preconcentration can substantially increase the time and cost of analyses while also introducing additional loss of target during processing. To address some of these issues, we conducted a longitudinal study implementing a simplified workflow for SARS-CoV-2 detection from wastewater, using a direct column-based extraction approach. Composite influent wastewater samples were collected weekly for 1 year between June 2020 and June 2021 in Athens-Clarke County, Georgia, USA. Bypassing any concentration step, low volumes (280 µl) of influent wastewater were extracted using a commercial kit, and immediately analyzed by RT-qPCR for the SARS-CoV-2 N1 and N2 gene targets. SARS-CoV-2 viral RNA was detected in 76% (193/254) of influent samples, and the recovery of the surrogate bovine coronavirus was 42% (IQR: 28%, 59%). N1 and N2 assay positivity, viral concentration, and flow-adjusted daily viral load correlated significantly with per-capita case reports of COVID-19 at the county-level (ρ = 0.69–0.82). To compensate for the method’s high limit of detection (approximately 106–107 copies l−1 in wastewater), we extracted multiple small-volume replicates of each wastewater sample. With this approach, we detected as few as five cases of COVID-19 per 100 000 individuals. These results indicate that a direct-extraction-based workflow for SARS-CoV-2 wastewater surveillance can provide informative and actionable results.

     
    more » « less
  2. The present study investigated wastewater treatment for the removal of 11 different virus types (pepper mild mottle virus; Aichi virus; genogroup I, II, and IV noroviruses; enterovirus;sapovirus; group-A rotavirus; adenovirus; and JC and BK polyomaviruses) by two wastewater treatment facilities utilizing advanced Bardenpho technology and compared the results with conventional treatment processes. To our knowledge, this is the first study comparing full-scale treatment processes that all received sewage influent from the same region. The incidence of viruses in wastewater was assessed with respect to absolute abundance, occurrence, and reduction in monthly samples collected throughout a 12 month period in southern Arizona. Samples were concentrated via an electronegative filter method and quantified using TaqMan-based quantitative polymerase chain reaction (qPCR). Results suggest that Plant D, utilizing an advanced Bardenpho process as secondary treatment, effectively reduced pathogenic viruses better than facilities using conventional processes. However, the absence of cell-culture assays did not allow an accurate assessment of infective viruses. On the basis of these data, the Aichi virus is suggested as a conservative viral marker for adequate wastewater treatment, as it most often showed the best correlation coefficients to viral pathogens, was always detected at higher concentrations, and may overestimate the potential virus risk. 
    more » « less
  3. Abstract

    While hundreds of thousands of human whole genome sequences (WGS) have been collected in the effort to better understand genetic determinants of disease, these whole genome sequences have less frequently been used to study another major determinant of human health: the human virome. Using the unmapped reads from WGS of over 1000 families, we present insights into the human blood DNA virome, focusing particularly on human herpesvirus (HHV) 6A, 6B, and 7. In addition to extensively cataloguing the viruses detected in WGS of human whole blood and lymphoblastoid cell lines, we use the family structure of our dataset to show that household drives transmission of several viruses, and identify the Mendelian inheritance patterns characteristic of inherited chromsomally integrated human herpesvirus 6 (iciHHV-6). Consistent with prior studies, we find that 0.6% of our dataset’s population has iciHHV, and we locate candidate integration sequences for these cases. We document genetic diversity within exogenous and integrated HHV species and within integration sites of HHV-6. Finally, in the first observation of its kind, we present evidence that suggests widespread de novo HHV-6B integration and HHV-7 integration and reactivation in lymphoblastoid cell lines. These findings show that the unmapped read space of WGS is a promising source of data for virology research.

     
    more » « less
  4. Swanson, Michele S. (Ed.)
    ABSTRACT Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time monitoring of community-wide transmission of SARS-CoV-2 and allows assessing and mitigating COVID-19 outbreaks, by evaluating the total microbial assemblage in a community. Composite wastewater samples (24 h) were collected weekly from a manhole between December 2020 and November 2021 in Maryland, USA. RT-qPCR results showed concentrations of SARS-CoV-2 RNA recovered from wastewater samples reflected incidence of COVID-19 cases. When a drastic increase in COVID-19 was detected in February 2021, samples were selected for microbiome analysis (DNA metagenomics, RNA metatranscriptomics, and targeted SARS-CoV-2 sequencing). Targeted SARS-CoV-2 sequencing allowed for detection of important genetic mutations, such as spike: K417N, D614G, P681H, T716I, S982A, and D1118H, commonly associated with increased cell entry and reinfection. Microbiome analysis (DNA and RNA) provided important insight with respect to human health-related factors, including detection of pathogens and their virulence/antibiotic resistance genes. Specific microbial species comprising the wastewater microbiome correlated with incidence of SARS-CoV-2 RNA, suggesting potential association with SARS-CoV-2 infection. Climatic conditions, namely, temperature, were related to incidence of COVID-19 and detection of SARS-CoV-2 in wastewater, having been monitored as part of an environmental risk score assessment carried out in this study. In summary, the wastewater microbiome provides useful public health information, and hence, a valuable tool to proactively detect and characterize pathogenic agents circulating in a community. In effect, metagenomics of wastewater can serve as an early warning system for communicable diseases, by providing a larger source of information for health departments and public officials. IMPORTANCE Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be detected in feces of infected individuals. Therefore, wastewater samples can be used to test all individuals of a community contributing to the sewage collection system, i.e., the infrastructure, such as gravity pipes, manholes, tanks, lift stations, control structures, and force mains, that collects used water from residential and commercial sources and conveys the flow to a wastewater treatment plant. Here, we profile community wastewater collected from a manhole, detect presence of SARS-CoV-2, identify genetic mutations of SARS-CoV-2, and perform COVID-19 risk score assessment of the study area. Using metagenomics analysis, we also detect other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Results show that by analyzing all microorganisms present in wastewater, pathogens circulating in a community can provide an early warning for contagious diseases. 
    more » « less
  5. Abstract Aims

    Beach water quality is regulated by faecal indicator bacteria levels, sand is not, despite known human health risk from exposure to beach sand. We compared the performance of three methods to extract bacterial DNA from beach sand as a step toward a standard method.

    Methods and results

    The analytical sensitivity of quantitative polymerase chain reaction (qPCR) for Enterococcus was compared for the slurry (suspension, agitation, membrane filtration of supernatant), versus direct extraction using PowerSoil™ or PowerMax Soil™ kits. The slurry method had the lowest limit of detection at 20–80 gene copies g−1, recovered significantly more DNA, and the only method that detected Enterococcus by qPCR in all samples; therefore, the only method used in subsequent experiments. The slurry method reflected the spatial variability of Enterococcus in individual transect samples. Mean recovery efficiency of the microbial source tracking marker HF183 from wastewater spiked marine and freshwater beach sand was 100.8% and 64.1%, respectively, but varied, indicating that the mixing protocol needs improvement.

    Conclusions

    Among the three methods, the slurry method had the best analytical sensitivity and produced extracts that were useful for culture or molecular analysis.

    Significance and impact of study

    Standardization of methods for extraction of bacterial DNA from sand facilitates comparisons among studies, and ultimately contributes to the safety of recreational beaches.

     
    more » « less