skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: There and back again: Understanding the critical properties of backsplash galaxies
ABSTRACT Backsplash galaxies are galaxies that once resided inside a cluster, and have migrated back outside as they move towards the apocentre of their orbit. The kinematic properties of these galaxies are well understood, thanks to the significant study of backsplashers in dark matter-only simulations, but their intrinsic properties are not well-constrained due to modelling uncertainties in subgrid physics, ram pressure stripping, dynamical friction, and tidal forces. In this paper, we use the IllustrisTNG300-1 simulation, with a baryonic resolution of Mb ≈ 1.1 × 107 M⊙, to study backsplash galaxies around 1302 isolated galaxy clusters with mass 1013.0 < M200,mean/M⊙ < 1015.5. We employ a decision tree classifier to extract features of galaxies that make them likely to be backsplash galaxies, compared to nearby field galaxies, and find that backsplash galaxies have low gas fractions, high mass-to-light ratios, large stellar sizes, and low black hole occupation fractions. We investigate in detail the origins of these large sizes, and hypothesize their origins are linked to the tidal environments in the cluster. We show that the black hole recentring scheme employed in many cosmological simulations leads to the loss of black holes from galaxies accreted into clusters, and suggest improvements to these models. Generally, we find that backsplash galaxies are a useful population to test and understand numerical galaxy formation models due to their challenging environments and evolutionary pathways that interact with poorly constrained physics.  more » « less
Award ID(s):
2007355 2107724
PAR ID:
10394802
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
520
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 649-667
Size(s):
p. 649-667
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Understanding quenching mechanisms in low-mass galaxies is essential for understanding galaxy evolution overall. In particular, isolated galaxies are important tools to help disentangle the complex internal and external processes that impact star formation. Comparisons between quenched field and satellite galaxies in the low-mass regime offer a substantial opportunity for discovery, although very few quenched galaxies with masses below $$M_{\star }\, \sim \, 10^{9} {\rm M}_{\odot }$$ are known outside the virial radius, Rvir, of any host halo. Importantly, simulations and observations suggest that an in-between population of backsplash galaxies also exists that may complement interpretations of environmental quenching. Backsplash galaxies – like field galaxies – reside outside the virial radius of a host halo, but their star formation can be deeply impacted by previous interactions with more massive systems. In this paper, we report the concurrent discovery of a low-mass ($$M_{\star }\, \sim \, 10^{7} {\rm M}_{\odot }$$) quenched galaxy approximately 1Rvir in projection from the M81 group. We use surface brightness fluctuations (SBF) to investigate the possibility that the new galaxy, dw0910+7326 (nicknamed Blobby), is a backsplash galaxy or a more distant field galaxy. The measured SBF distance of $$3.21\substack{+0.15 +0.41 \\-0.15 -0.36}$$ Mpc indicates that Blobby likely lies in the range 1.0 < R/Rvir < 2.7 outside the combined M81–M82 system. Given its distance and quiescence, Blobby is a good candidate for a backsplash galaxy and could provide hints about the formation and evolution of these interesting objects. 
    more » « less
  2. ABSTRACT We present a photometric halo mass estimation technique for local galaxies that enables us to establish the stellar mass–halo mass (SMHM) relation down to stellar masses of 105 M⊙. We find no detectable differences among the SMHM relations of four local galaxy clusters or between the cluster and field relations and we find agreement with extrapolations of previous SMHM relations derived using abundance matching approaches. We fit a power law to our empirical SMHM relation and find that for adopted NFW dark matter profiles and for M* < 109 M⊙, the halo mass is Mh = 1010.35 ± 0.02(M*/108 M⊙)0.63 ± 0.02. The normalization of this relation is susceptible to systematic modelling errors that depend on the adopted dark matter potential and the quoted uncertainties refer to the uncertainties in the median relation. For galaxies with M* < 109 M⊙ that satisfy our selection criteria, the scatter about the fit in Mh, including uncertainties arising from our methodology, is 0.3 dex. Finally, we place lower luminosity Local Group galaxies on the SMHM relationship using the same technique, extending it to M* ∼ 103 M⊙ and suggest that some of these galaxies show evidence for additional mass interior to the effective radius beyond that provided by the standard dark matter profile. If this mass is in the form of a central black hole, the black hole masses are in the range of intermediate mass black holes, 10(5.7 ± 0.6) M⊙, which corresponds to masses of a few percent of Mh, well above values extrapolated from the relationships describing more massive galaxies. 
    more » « less
  3. ABSTRACT We study the link between supermassive black hole growth and the stellar mass assembly of their host galaxies in the state-of-the-art Romulus suite of simulations. The cosmological simulations Romulus25 and RomulusC employ innovative recipes for the seeding, accretion, and dynamics of black holes in the field and cluster environments, respectively. We find that the black hole accretion rate traces the star formation rate among star-forming galaxies. This result holds for stellar masses between 108 and 1012 solar masses, with a very weak dependence on host halo mass or redshift. The inferred relation between accretion rate and star formation rate does not appear to depend on environment, as no difference is seen in the cluster/proto-cluster volume compared to the field. A model including the star formation rate, the black hole-to-stellar mass ratio, and the cold gas fraction can explain about 70 per cent of all variations in the black hole accretion rate among star-forming galaxies. Finally, bearing in mind the limited volume and resolution of these cosmological simulations, we find no evidence for a connection between black hole growth and galaxy mergers, on any time-scale and at any redshift. Black holes and their galaxies assemble in tandem in these simulations, regardless of the larger scale intergalactic environment, suggesting that black hole growth simply follows star formation on galactic scales. 
    more » « less
  4. ABSTRACT The current generation of galaxy simulations can resolve individual giant molecular clouds, the progenitors of dense star clusters. But the evolutionary fate of these young massive clusters, and whether they can become the old globular clusters (GCs) observed in many galaxies, is determined by a complex interplay of internal dynamical processes and external galactic effects. We present the first star-by-star N-body models of massive (N ∼ 105–107) star clusters formed in a FIRE-2 MHD simulation of a Milky Way-mass galaxy, with the relevant initial conditions and tidal forces extracted from the cosmological simulation. We select 895 (∼30 per cent) of the YMCs with >6 × 104 M⊙ from Grudić et al. 2022 and integrate them to z = 0 using the cluster Monte Carlo code, CMC. This procedure predicts a MW-like system with 148 GCs, predominantly formed during the early, bursty mode of star formation. Our GCs are younger, less massive, and more core-collapsed than clusters in the Milky Way or M31. This results from the assembly history and age-metallicity relationship of the host galaxy: Younger clusters are preferentially born in stronger tidal fields and initially retain fewer stellar-mass black holes, causing them to lose mass faster and reach core collapse sooner than older GCs. Our results suggest that the masses and core/half-light radii of GCs are shaped not only by internal dynamical processes, but also by the specific evolutionary history of their host galaxies. These results emphasize that N-body studies with realistic stellar physics are crucial to understanding the evolution and present-day properties of GC systems. 
    more » « less
  5. ABSTRACT We measure the rate of environmentally driven star formation quenching in galaxies at z ∼ 1, using eleven massive ($$M\approx 2\times 10^{14}\, \mathrm{M}_\odot$$) galaxy clusters spanning a redshift range 1.0 < z < 1.4 from the GOGREEN sample. We identify three different types of transition galaxies: ‘green valley’ (GV) galaxies identified from their rest-frame (NUV − V) and (V − J) colours; ‘blue quiescent’ (BQ) galaxies, found at the blue end of the quiescent sequence in (U − V) and (V − J) colour; and spectroscopic post-starburst (PSB) galaxies. We measure the abundance of these galaxies as a function of stellar mass and environment. For high-stellar mass galaxies (log M/M⊙ > 10.5) we do not find any significant excess of transition galaxies in clusters, relative to a comparison field sample at the same redshift. It is likely that such galaxies were quenched prior to their accretion in the cluster, in group, filament, or protocluster environments. For lower stellar mass galaxies (9.5 < log M/M⊙ < 10.5) there is a small but significant excess of transition galaxies in clusters, accounting for an additional ∼5–10 per cent of the population compared with the field. We show that our data are consistent with a scenario in which 20–30 per cent of low-mass, star-forming galaxies in clusters are environmentally quenched every Gyr, and that this rate slowly declines from z = 1 to z = 0. While environmental quenching of these galaxies may include a long delay time during which star formation declines slowly, in most cases this must end with a rapid (τ < 1 Gyr) decline in star formation rate. 
    more » « less