Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Using high-resolution cosmological radiation-hydrodynamic (RHD) simulations (thesan-hr), we explore the impact of alternative dark matter (altDM) models on galaxies during the Epoch of Reionization. The simulations adopt the IllustrisTNG galaxy formation model. We focus on altDM models that exhibit small-scale suppression of the matter power spectrum, namely warm dark matter (WDM), fuzzy dark matter (FDM), and interacting dark matter (IDM) with strong dark acoustic oscillations (sDAO). In altDM scenarios, both the halo mass functions and the ultraviolet luminosity functions at z ≳ 6 are suppressed at the low-mass/faint end, leading to delayed global star formation and reionization histories. However, strong non-linear effects enable altDM models to ‘catch up’ with cold dark matter (CDM) in terms of star formation and reionization. The specific star formation rates are enhanced in halos below the half-power mass in altDM models. This enhancement coincides with increased gas abundance, reduced gas depletion times, more compact galaxy sizes, and steeper metallicity gradients at the outskirts of the galaxies. These changes in galaxy properties can help disentangle altDM signatures from a range of astrophysical uncertainties. Meanwhile, it is the first time that altDM models have been studied in RHD simulations of galaxy formation. We uncover significant systematic uncertainties in reionization assumptions on the faint-end luminosity function. This underscores the necessity of accurately modeling the small-scale morphology of reionization in making predictions for the low-mass galaxy population. Upcoming James Webb Space Telescope imaging surveys of deep lensed fields hold potential for uncovering the faint low-mass galaxy population, which could provide constraints on altDM models.more » « less
-
Abstract The Large Magellanic Cloud (LMC) will induce a dynamical friction (DF) wake on infall to the Milky Way (MW). The MW’s stellar halo will respond to the gravity of the LMC and the dark matter (DM) wake, forming a stellar counterpart to the DM wake. This provides a novel opportunity to constrain the properties of the DM particle. We present a suite of high-resolution, windtunnel-style simulations of the LMC's DF wake that compare the structure, kinematics, and stellar tracer response of the DM wake in cold DM (CDM), with and without self-gravity, versus fuzzy DM (FDM) withma= 10−23eV. We conclude that the self-gravity of the DM wake cannot be ignored. Its inclusion raises the wake’s density by ∼10%, and holds the wake together over larger distances (∼50 kpc) than if self-gravity is ignored. The DM wake’s mass is comparable to the LMC’s infall mass, meaning the DM wake is a significant perturber to the dynamics of MW halo tracers. An FDM wake is more granular in structure and is ∼20% dynamically colder than a CDM wake, but with comparable density. The granularity of an FDM wake increases the stars’ kinematic response at the percent level compared to CDM, providing a possible avenue of distinguishing a CDM versus FDM wake. This underscores the need for kinematic measurements of stars in the stellar halo at distances of 70–100 kpc.more » « less
-
ABSTRACT Self-interacting dark matter (SIDM) offers the potential to mitigate some of the discrepancies between simulated cold dark matter (CDM) and observed galactic properties. We introduce a physically motivated SIDM model to understand the effects of self interactions on the properties of Milky Way and dwarf galaxy sized haloes. This model consists of dark matter with a nearly degenerate excited state, which allows for both elastic and inelastic scattering. In particular, the model includes a significant probability for particles to up-scatter from the ground state to the excited state. We simulate a suite of zoom-in Milky Way-sized N-body haloes with six models with different scattering cross sections to study the effects of up-scattering in SIDM models. We find that the up-scattering reaction greatly increases the central densities of the main halo through the loss of kinetic energy. However, the physical model still results in significant coring due to the presence of elastic scattering and down-scattering. These effects are not as apparent in the subhalo population compared to the main halo, but the number of subhaloes is reduced compared to CDM.more » « less
-
ABSTRACT Star-forming galaxies like the Milky Way are surrounded by a hot gaseous halo at the virial temperature – the so-called galactic corona – that plays a fundamental role in their evolution. The interaction between the disc and the corona has been shown to have a direct impact on accretion of coronal gas onto the disc with major implications for galaxy evolution. In this work, we study the gas circulation between the disc and the corona of star-forming galaxies like the Milky Way. We use high-resolution hydrodynamical N-body simulations of a Milky Way-like galaxy with the inclusion of an observationally motivated galactic corona. In doing so, we use SMUGGLE, an explicit interstellar medium (ISM), and stellar feedback model coupled with the moving-mesh code arepo. We find that the reservoir of gas in the galactic corona is sustaining star formation: the gas accreted from the corona is the primary fuel for the formation of new stars, helping in maintaining a nearly constant level of cold gas mass in the galactic disc. Stellar feedback generates a gas circulation between the disc and the corona (the so-called galactic fountain) by ejecting different gas phases that are eventually re-accreted onto the disc. The accretion of coronal gas is promoted by its mixing with the galactic fountains at the disc–corona interface, causing the formation of intermediate temperature gas that enhances the cooling of the hot corona. We find that this process acts as a positive feedback mechanism, increasing the accretion rate of coronal gas onto the galaxy.more » « less
-
ABSTRACT We investigate cosmological structure formation in fuzzy dark matter (FDM) with the attractive self-interaction (SI) with numerical simulations. Such a SI would arise if the FDM boson were an ultra-light axion, which has a strong CP symmetry-breaking scale (decay constant). Although weak, the attractive SI may be strong enough to counteract the quantum ‘pressure’ and alter structure formation. We find in our simulations that the SI can enhance small-scale structure formation, and soliton cores above a critical mass undergo a phase transition, transforming from dilute to dense solitons.more » « less
-
ABSTRACT We present a new set of cosmological zoom-in simulations of a Milky Way (MW)-like galaxy that for the first time include elastic velocity-dependent self-interacting dark matter (SIDM) and IllustrisTNG physics. With these simulations, we investigate the interaction between SIDM and baryons and its effects on the galaxy evolution process. We also introduce a novel set of modified dark matter-only simulations that can reasonably replicate the effects of fully realized hydrodynamics on the DM halo while simplifying the analysis and lowering the computational cost. We find that baryons change the thermal structure of the central region of the halo to a greater extent than the SIDM scatterings for MW-like galaxies. Additionally, we find that the new thermal structure of the MW-like halo causes SIDM to create cuspier central densities rather than cores because the SIDM scatterings remove the thermal support by transferring heat away from the centre of the galaxy. We find that this effect, caused by baryon contraction, begins to affect galaxies with a stellar mass of 108 M⊙ and increases in strength to the MW-mass scale.more » « less
-
ABSTRACT Backsplash galaxies are galaxies that once resided inside a cluster, and have migrated back outside as they move towards the apocentre of their orbit. The kinematic properties of these galaxies are well understood, thanks to the significant study of backsplashers in dark matter-only simulations, but their intrinsic properties are not well-constrained due to modelling uncertainties in subgrid physics, ram pressure stripping, dynamical friction, and tidal forces. In this paper, we use the IllustrisTNG300-1 simulation, with a baryonic resolution of Mb ≈ 1.1 × 107 M⊙, to study backsplash galaxies around 1302 isolated galaxy clusters with mass 1013.0 < M200,mean/M⊙ < 1015.5. We employ a decision tree classifier to extract features of galaxies that make them likely to be backsplash galaxies, compared to nearby field galaxies, and find that backsplash galaxies have low gas fractions, high mass-to-light ratios, large stellar sizes, and low black hole occupation fractions. We investigate in detail the origins of these large sizes, and hypothesize their origins are linked to the tidal environments in the cluster. We show that the black hole recentring scheme employed in many cosmological simulations leads to the loss of black holes from galaxies accreted into clusters, and suggest improvements to these models. Generally, we find that backsplash galaxies are a useful population to test and understand numerical galaxy formation models due to their challenging environments and evolutionary pathways that interact with poorly constrained physics.more » « less
-
ABSTRACT The fuzzy dark matter (FDM) scenario has received increased attention in recent years due to the small-scale challenges of the vanilla Lambda cold dark matter (ΛCDM) cosmological model and the lack of any experimental evidence for any candidate particle. In this study, we use cosmological N-body simulations to investigate high-redshift dark matter haloes and their responsiveness to an FDM-like power spectrum cutoff on small scales in the primordial density perturbations. We study halo density profiles, shapes, and alignments in FDM-like cosmologies (the latter two for the first time) by providing fits and quantifying departures from ΛCDM as a function of the particle mass m. Compared to ΛCDM, the concentrations of FDM-like haloes are lower, peaking at an m-dependent halo mass and thus breaking the approximate universality of density profiles in ΛCDM. The intermediate-to-major and minor-to-major shape parameter profiles are monotonically increasing with ellipsoidal radius in N-body simulations of ΛCDM. In FDM-like cosmologies, the monotonicity is broken, haloes are more elongated around the virial radius than their ΛCDM counterparts and less elongated closer to the centre. Finally, intrinsic alignment correlations, stemming from the deformation of initially spherically collapsing haloes in an ambient gravitational tidal field, become stronger with decreasing m. At z ∼ 4, we find a 6.4σ-significance in the fractional differences between the isotropized linear alignment magnitudes Diso in the m = 10−22 eV model and ΛCDM. Such FDM-like imprints on the internal properties of virialized haloes are expected to be strikingly visible in the high-z Universe.more » « less
-
ABSTRACT The tension between the diverging density profiles in Lambda cold dark matter simulations and the constant-density inner regions of observed galaxies is a long-standing challenge known as the ‘core–cusp’ problem. We demonstrate that the SMUGGLE galaxy formation model implemented in the arepo moving mesh code forms constant-density cores in idealized dwarf galaxies of M⋆ ≈ 8 × 107 Msun with initially cuspy dark matter (DM) haloes of M200 ≈ 1010 Msun. Identical initial conditions run with an effective equation of state interstellar medium model preserve cuspiness. Literature on the subject has pointed to the low density threshold for star formation, ρth, in such effective models as an obstacle to baryon-induced core formation. Using a SMUGGLE run with equal ρth, we demonstrate that core formation can proceed at low density thresholds, indicating that ρth is insufficient on its own to determine whether a galaxy develops a core. We reaffirm that the ability to resolve a multiphase interstellar medium at sufficiently high densities is a more reliable indicator of core formation than any individual model parameter. In SMUGGLE, core formation is accompanied by large degrees of non-circular motion, with gas rotational velocity profiles that consistently fall below the circular velocity $$v_\text{circ} = \sqrt{GM/R}$$ out to ∼2 kpc. Asymmetric drift corrections help recover the average underlying DM potential for some of our less efficient feedback runs, but time-variations in the instantaneous azimuthal gas velocity component are substantial, highlighting the need for careful modelling in the inner regions of dwarfs to infer the true distribution of DM.more » « less
-
ABSTRACT We perform cosmological zoom-in simulations of 19 relaxed cluster-mass haloes with the inclusion of adiabatic gas in the cold dark matter (CDM) and self-interacting dark matter (SIDM) models. These clusters are selected as dynamically relaxed clusters from a parent simulation with $$M_{\rm 200} \simeq (1\!-\!3)\times 10^{15}{\, \rm M_\odot }$$. Both the dark matter and the intracluster gas distributions in SIDM appear more spherical than their CDM counterparts. Mock X-ray images are generated based on the simulations and are compared to the real X-ray images of 84 relaxed clusters selected from the Chandra and ROSAT archives. We perform ellipse fitting for the isophotes of mock and real X-ray images and obtain the ellipticities at cluster-centric radii of $$r\simeq 0.1\!-\!0.2R_{\rm 200}$$. The X-ray isophotes in SIDM models with increasing cross-sections are rounder than their CDM counterparts, which manifests as a systematic shift in the distribution function of ellipticities. Unexpectedly, the X-ray morphology of the observed non-cool-core clusters agrees better with SIDM models with cross-section $$(\sigma /m)= 0.5\!-\!1\, {\rm cm}^2\, {\rm g}^{-1}$$ than CDM and SIDM with $$(\sigma /m)=0.1\, {\rm cm}^2\, {\rm g}^{-1}$$. Our statistical analysis indicates that the latter two models are disfavoured at the $$68{{\ \rm per\ cent}}$$ confidence level (as conservative estimates). This conclusion is not altered by shifting the radial range of measurements or applying a temperature selection criterion. However, the primary uncertainty originates from the lack of baryonic physics in the adiabatic model, such as cooling, star formation and feedback effects, which still have the potential to reconcile CDM simulations with observations.more » « less