skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sensitivity of Linear Models of the Madden–Julian Oscillation to Convective Representation
Abstract Two analytical models with different starting points of convective parameterizations, the Fuchs and Raymond model on one hand and the Khairoutdinov and Emanuel model on the other, are used to develop “minimal difference” models for the MJO. The main physical mechanisms that drive the MJO in both models are wind-induced surface heat exchange (WISHE) and cloud–radiation interactions (CRI). The dispersion curves for the modeled eastward-propagating mode, the MJO mode, are presented for an idealized case with zero meridional wind and for the realistic cases with higher meridional numbers. In both cases, the two models produce eastward-propagating modes with the growth rate greatest at the largest wavelengths despite having different representations of cumulus convection. We show that the relative contributions of WISHE and CRI are sensitive to how the convection and entropy/moisture budgets are represented in models like these. Significance Statement The Madden–Julian oscillation is the largest weather disturbance on our planet. It propagates eastward encompassing the whole tropical belt. It influences weather all around the globe by modulating hurricanes, atmospheric rivers, and other phenomena. Numerical models that forecast the Madden–Julian oscillation need improvement. Here we explore the physics behind the Madden–Julian oscillation using simple analytical models. Our models are based on the assumption that surface enthalpy fluxes and cloud–radiation interactions are responsible for the Madden–Julian oscillation but it should be borne in mind that other physical mechanisms have been proposed for the MJO. The impact of this research is to better understand the Madden–Julian oscillation mechanism.  more » « less
Award ID(s):
2034817 1758513
PAR ID:
10394913
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
79
Issue:
6
ISSN:
0022-4928
Page Range / eLocation ID:
1575 to 1584
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent observations have indicated significant modulation of the Madden Julian Oscillation (MJO) by the phase of the stratospheric Quasi-Biennial Oscillation (QBO) during boreal winter. Composites of the MJO show that upper tropospheric ice cloud fraction and water vapor anomalies are generally collocated, and that an eastward tilt with height in cloud fraction exists. Through radiative transfer calculations, it is shown that ice clouds have a stronger tropospheric radiative forcing than do water vapor anomalies, highlighting the importance of incorporating upper tropospheric/lower stratospheric processes into simple models of the MJO. The coupled troposphere-stratosphere linear model previously developed by the authors is extended by including a mean wind in the stratosphere and a prognostic equation for cirrus clouds, which are forced dynamically and allowed to modulate tropospheric radiative cooling, similar to the effect of tropospheric water vapor in previous formulations. Under these modifications, the model still produces a slow, eastward propagating mode that resembles the MJO. The sign of zonal mean wind in the stratosphere is shown to control both the upward wave propagation and tropospheric vertical structure of the mode. Under varying stratospheric wind and interactive cirrus cloud radiation, the MJO-like mode has weaker growth rates under stratospheric westerlies than easterlies, consistent with the observed MJO-QBO relationship. These results are directly attributable to an enhanced barotropic mode under QBO easterlies. It is also shown that differential zonal advection of cirrus clouds leads to weaker growth rates under stratospheric westerlies than easterlies. Implications and limitations of the linear theory are discussed. 
    more » « less
  2. Abstract Eastward-moving moist deep convection and atmospheric circulation signals associated with the tropical Madden–Julian oscillation (MJO) sometimes break down as they cross the Maritime Continent region, but other times, the signal propagates across the region maintaining amplitude or regaining it over the west Pacific basin. This paper assesses the hypothesis that upper-tropospheric zonal diffluence of the background wind over the Maritime Continent causes much of this Maritime Continent barrier effect and its variation over time, through two mechanisms: 1) by slowing down the MJO as stronger-than-average background upper-tropospheric zonal wind over the Indian Ocean advects the MJO circulation signal westward, slowing its eastward advance, and 2) through the zonal advection of the background wind by subseasonal zonal wind across a region of zonal diffluence of the background wind, which advects the background wind of the opposite sign to the MJO wind. Advection of the opposite-signed background wind counteracts the MJO wind and reduces its associated upper-tropospheric mass divergence, weakening the mechanisms of the upper-tropospheric Kelvin wave component of the MJO circulation. Composites of MJO-associated zonal wind and outgoing longwave radiation signals diminish as they cross the Maritime Continent region when the region’s background zonal winds are diffluent, and composites of data reconstructing the relevant advection terms reveal the direct action of the advection mechanisms. Significance StatementThe Madden–Julian oscillation (MJO) is the leading subseasonal variation of the tropical atmosphere. This project addresses how diffluence of the upper-tropospheric background zonal wind can break down MJO events through advection of and by the background wind. 
    more » « less
  3. Abstract The Madden–Julian oscillation (MJO) propagates eastward as a disturbance of mostly zonal wind and precipitation along the equator. The initial diagnosis of the MJO spectral peak at 40–50-day periods suggests a reduction in amplitude associated with slower MJO events that occur at lower frequencies. If events on the low-frequency side of the spectral peak continued to grow in amplitude with reduced phase speed, the spectrum would just be red. Wavelet regression analysis of slow and fast eastward-propagating MJO signals during northern winter assesses how associated moisture and wind patterns could explain why slow MJO events achieve lower amplitude in tracers of moist convection. Results suggest that slow MJO events favor a ridge anomaly over Europe, which drives cool dry air equatorward over Africa and Arabia as the active convection develops over the Indian Ocean. We hypothesize that dry air tracing back to this source, together with a longer duration of the events, leads to associated convection diminishing along the equator and instead concentrating in the Rossby gyres off the equator. Significance StatementThe Madden–Julian oscillation (MJO) dominates the subseasonal variability of the tropical atmosphere. This work suggests that it favors maximum convective activity in the 40–50-day period range because lower-frequency MJO signals tend to import more cool dry air from the extratropics and along the equator, thereby weakening the slower events. 
    more » « less
  4. The two-way interaction between Madden–Julian oscillation (MJO) and higher-frequency waves (HFW) over the Maritime Continent (MC) during boreal winter of 1984–2005 is investigated. It is noted from observational analysis that strengthened (weakened) HFW activity appears to the west (east) of and under MJO convection during the MJO active phase and the opposite is seen during the MJO suppressed phase. Sensitivity model experiments indicate that the control of HFW activity by MJO is through change of the background vertical wind shear and specific humidity. The upscale feedbacks from HFW to MJO through nonlinear rectification of condensational heating and eddy momentum transport are also investigated with observational data. A significantly large amount (25%–40%) of positive heating anomaly ([Formula: see text]) at low levels to the east of MJO convection is contributed by nonlinear rectification of HFW. This nonlinear rectification is primarily attributed to eddy meridional moisture advection. A momentum budget diagnosis reveals that 60% of MJO zonal wind tendency at 850 hPa is attributed to the nonlinear interaction of HFW with other scale flows. Among them, the largest contribution arises from eddy zonal momentum flux divergence [Formula: see text]. Easterly (westerly) vertical shear to the west (east) of MJO convection during the MJO active phase causes the strengthening (weakening) of the HFW zonal wind anomaly. This leads to the increase (decrease) of eddy momentum flux activity to the east (west) of the MJO convection, which causes a positive (negative) eddy zonal momentum flux divergence in the zonal wind transitional region during the MJO active (suppressed) phase, favoring the eastward propagation of the MJO. 
    more » « less
  5. Although the tropical intraseaonal variability (TISV), as the most important predictability sources for subseasonal-to-seasonal (S2S) prediction, is dominated by Madden-Julian oscillation (MJO), its significant fraction does not always share the canonical MJO features, especially when the convective activity arrives at Maritime Continent. In this study, using principal oscillation pattern (POP) analysis on the combined fields of daily equatorial convection and zonal wind, two distinct leading TISV modes with relatively slower e-folding decay rates are identified. One is an oscillatory mode with the period of 51 days and e-folding time of 19 days, capturing the eastward propagating (EP) feature of the canonical MJO. The other is a non-oscillatory damping mode with e-folding time of 13.6 days, capturing a standing dipole (SD) with convection anomalies centered over the Maritime Continent and tropical central Pacific, respectively. Compared to the EP mode, the leading moisture anomalies at low level to the east of convection center are diminish for the SD mode, and instead, the strong negative anomalies of moisture and subsidence motion emerge in the tropical central Pacific area, which may be responsible for the distinct propagation features. Without filtering methods used, timeseries of the two POPs could be applied to the real-time monitoring of EP and SD events in the phase-space diagram. The two modes can serve as the simple and objective approach for a better characterization for diverse natures of TISV beyond the canonical MJO description, which may further shed light on dynamics of the TISV and its predictability. 
    more » « less