Reef communities changed dramatically during the Early Jurassic as they recovered from the End-Triassic Mass Extinction. The Atlas Rift Zone in Morocco provided expansive shallow water substrate, which allowed a variety of reef communities to develop, such as lithiotid bivalves that established themselves as new and prolific reef builders alongside corals, microbialites, and sponges in the Sinemurian and Pliensbachian stages. To better understand the dynamics between these reef builders and their environments, a detailed facies analysis of upper Pliensbachian reefs and a quantitative analysis of their composition was undertaken. We describe two distinct environmentally controlled reef types in the Central High Atlas Mountains. Lithiotid bivalves dominated reef construction in lagoonal environments and, together with phaceloid corals, commonly built bioherms and biostromes that ranged from 1 to 2 m tall and up to several hundred meters wide. Meanwhile, on the platform edge, microbialites, corals, and sponges constructed patch reefs up to 7 m tall and 20 m wide. These two reef types share common facies, as many of the same reef inhabitants, and some framework builders, grew in both environments. Despite the facies overlap, the communities in these two environmental settings are distinct, which is likely a result of environmental controls on the dominant reef framework builders. Moderately turbid waters and soft substrate in lagoons were ideal conditions for lithiotids but excluded many corals, sponges, and microbialites. Conversely, the clear, oligotrophic waters at the platform edge allowed photosynthetic and photosymbiotic organisms to thrive (e.g., coral and microbial reefs), while firmer substrate and higher wave energy may have prevented lithiotids from establishing dense populations.
more »
« less
ASSESSMENT OF A REEF COMMUNITY FROM LOWER JURASSIC (PLIENSBACHIAN) STRATA IN THE CENTRAL HIGH ATLAS MOUNTAINS OF MOROCCO
Abstract During the Early Jurassic, reefs in the shallow seas of the Atlas Rift experienced substantial changes as they recovered from the end-Triassic mass extinction. Excellent Lower Jurassic reef deposits documenting this change occur in the Central High Atlas region of Morocco, and herein we describe Owl Olistolith, a micro-olistolith found in lower Pliensbachian-aged (∼ 188.7 million years ago) Moroccan strata. The olistolith records the composition of a reef that grew within the Atlas rift zone and represents a snapshot of reef recovery ∼ 10 million years after the end-Triassic mass extinction. Owl Olistolith is derived from a reef that was originally situated on an outer platform within fair weather wave base; it broke loose and was transported to deeper water and deposited amongst marls. Corals and microbialites formed the primary framework of the reef; microproblematica, foraminifera, and other minor components were also present. The reef can be divided into two dominant facies: a microbialite facies that contains no corals (54%–94% microbialites), and a coral-microbialite facies with substantial proportions of both microbialite (23%–50%) and corals (14%–72%). The micro-olistolith contains at least 15 distinct coral types. In this study, seven coral genera were identified, three of which represent taxa that span the Triassic/Jurassic boundary, including Coryphyllia, Stylophyllopsis, and Margarosmilia. These results indicate that, although surviving taxa played a significant role, newly evolved corals were the most important taxa in the reestablishment of reef ecosystems in the Early Jurassic of Morocco.
more »
« less
- Award ID(s):
- 1848393
- PAR ID:
- 10394968
- Date Published:
- Journal Name:
- PALAIOS
- Volume:
- 37
- Issue:
- 11
- ISSN:
- 0883-1351
- Page Range / eLocation ID:
- 633 to 649
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The elevation of Great Salt Lake has fallen to historic lows in recent years, exposing once submerged microbialites along the lake’s shores. Although prior studies have attempted to map microbialite locations, this has proved challenging, with mapped microbialite areas limited to accessible shoreline locations or via indirect sonographic evidence. Meanwhile, the importance of Great Salt Lake’s microbialites to the lake’s food chain has made quantifying the extent of microbialites exposed versus submerged at different lake elevations critical to lake management decisions. Low lake levels combined with seasonal high-water clarity have enabled microbialite reefs to be spotted in aerial and satellite imagery, even in deeper areas of the lake. In this study, satellite images were used to identify and map microbialite reef areas in Great Salt Lake and along its dry shores. In the south arm, submerged microbialites were easily recognized as dark green reefs against a light-colored benthic background (primarily ooid sand). Stationary microbialite mounds were distinguished from rip-up clasts or other dark-colored mobile material by comparing potential microbialite regions across several high-visibility timepoints. In this way, we identified 649 km2 (251 mi2) of putative microbialite reef area: 288 km2 (111 mi2) in the north arm, 360 km2 (139 mi2) in the south arm, of which 375 km2 (145 mi2) was mapped at a high degree of confidence. We also produced geospatial shapefiles of these areas. This map, combined with currently available lake bathymetric data, permits the estimation of the extent of microbialite reef exposed vs. submerged in various parts of the lake at different lake elevations. At the end of fall 2022, when lake level dipped to 1276.7 masl (4188.5 ft-asl) in elevation, we estimate that ~40% of the south arm microbialite reef area was exposed.more » « less
-
null (Ed.)The Earth has been beset by many crises during its history, and yet comparing the ecological impacts of these mass extinctions has been difficult. Key questions concern the kinds of species that go extinct and survive, how communities rebuild in the post-extinction recovery phase, and especially how the scaling of events affects these processes. Here, we explore ecological impacts of terrestrial and freshwater ecosystems in three mass extinctions through the mid-Phanerozoic, a span of 121 million years (295–174 Ma). This critical duration encompasses the largest mass extinction of all time, the Permian–Triassic (P–Tr) and is flanked by two smaller crises, the Guadalupian–Lopingian (G–L) and Triassic–Jurassic (T–J) mass extinctions. Palaeocommunity dynamics modelling of 14 terrestrial and freshwater communities through a long sedimentary succession from the lower Permian to the lower Jurassic in northern Xinjiang, northwest China, shows that the P–Tr mass extinction differed from the other two in two ways: (i) ecological recovery from this extinction was prolonged and the three post-extinction communities in the Early Triassic showed low stability and highly variable and unpredictable responses to perturbation primarily following the huge losses of species, guilds and trophic space; and (ii) the G–L and T–J extinctions were each preceded by low-stability communities, but post-extinction recovery was rapid. Our results confirm the uniqueness of the P–Tr mass extinction and shed light on the trophic structure and ecological dynamics of terrestrial and freshwater ecosystems across the three mid-Phanerozoic extinctions, and how complex communities respond to environmental stress and how communities recovered after the crisis. Comparisons with the coeval communities from the Karoo Basin, South Africa show that geographically and compositionally different communities of terrestrial ecosystems were affected in much the same way by the P–Tr extinction.more » « less
-
Three-dimensional tubular microfabrics known as ‘vermiform microstructure’ in Phanerozoic and Neoproterozoic carbonate microbialites have been hypothesized to represent the body fossil of nonspicular keratosan demosponges. If correct, this interpretation extends the sponge body fossil record to ~890 Ma, in good agreement with molecular clock estimates for the emergence of metazoans. However, the veracity of the keratose sponge interpretation for tubular microstructures remains in question and the origin of the microtubule texture is enigmatic. Here, we compare exceptionally preserved microbialite textures from Upper Triassic microbialites to channel networks created by modern microbial biofilms. We demonstrate that anastomosing channel networks of similar size and geometries to ‘vermiform microstructure’, are produced by microbial biofilms in the absence of sponges, suggesting the origin for the three-dimensional tubular microfabric in ancient carbonates is not unique to sponges and perhaps best interpreted conservatively as likely microbial in origin. We present a taphonomic model of early biofilm lithification in seawater with anomalously high carbonate supersaturation necessary to preserve delicate microbial textures. This work has implications for the understanding of three-dimensional biofilm architecture that goes beyond the current micro-scale observations available from living biofilm experiments and suggests that biofilm channel networks have an extensive fossil record.more » « less
-
Abstract The Central High Atlas Mountains of Morocco have an extensive record of Lower Jurassic deposits from the Tethyan Ocean. In the Amellago region, Ziz Valley, and Dadès Valley several fossilized reef outcrops preserve benthic foraminifera spanning the Pliensbachian and Toarcian stages. This study analyzes benthic foraminiferal assemblage changes across the bi-phased extinctions at the Pliensbachian/Toarcian boundary and the Jenkyns Event (also referred to as the Toarcian Oceanic Anoxic Event). In Pliensbachian samples, assemblages with abundant Glomospira sp., Glomospirella sp., Siphovalvulina sp., Haurania deserta, Placopsilina sp., Mesoendothyra sp., and Everticyclammina praevirguliana are observed. Following both the Pliensbachian/Toarcian boundary event and the Jenkyns Event, benthic foraminiferal density, evenness, and species richness decreased, indicating these communities underwent ecologic stress; however, loss of diversity was most substantial between samples that pre-date and post-date the Jenkyns Event. Whereas the Pliensbachian/Toarcian boundary event coincides with the demise of the large benthic foraminifera Mesoendothyra sp. and Everticyclammina praevirguliana, the Jenkyns Event was detrimental for most clades of benthic foraminifera, including many small, resilient taxa. Based on the evidence provided, we suggest that the Pliensbachian/Toarcian boundary and the Jenkyns Event were distinct events, potentially caused by distinct environmental perturbations.more » « less
An official website of the United States government

