skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effect of crystal composition and environment on the color Doppler ultrasound twinkling artifact
Abstract Objective.Pathological mineralizations form throughout the body and can be difficult to detect using conventional imaging methods. Color Doppler ultrasound twinkling highlights ∼60% of kidney stones with a rapid color shift and is theorized to arise from crevice microbubbles as twinkling disappears on kidney stones at elevated pressures and scratched acrylic balls in ethanol. Twinkling also sometimes appears on other pathological mineralizations; however, it is unclear whether the etiology of twinkling is the same as for kidney stones.Approach.In this study, five cholesterol, calcium phosphate, and uric acid crystals were grownin vitroand imaged in Doppler mode with a research ultrasound system and L7-4 transducer in water. To evaluate the influence of pressure on twinkling, the same crystals were imaged in a high-pressure chamber. Then, the effect of surface tension on twinkling was evaluated by imaging crystals in different concentrations of surfactant (1%, 2%, 3%, 4%) and ethanol (10%, 30%, 50%, 70%), artificial urine, bovine blood, and a tissue-mimicking phantom.Main results. Results showed that all crystals twinkled in water, with cholesterol twinkling significantly more than calcium phosphate and uric acid. When the ambient pressure was increased, twinkling disappeared for all tested crystals when pressures reached 7 MPa (absolute) and reappeared when returned to ambient pressure (0.1 MPa). Similarly, twinkling across all crystals decreased with surface tension when imaged in the surfactant and ethanol (statistically significant when surface tension <22 mN m−1) and decreased in blood (surface tension = 52.7 mN m−1) but was unaffected by artificial urine (similar surface tension to water). In the tissue-mimicking phantom, twinkling increased for cholesterol and calcium phosphate crystals with no change observed in uric acid crystals.Significance.Overall, these results support the theory that bubbles are present on crystals and cause twinkling, which could be leveraged to improve twinkling for the detection of other pathological mineralizations.  more » « less
Award ID(s):
1943937
PAR ID:
10395028
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Physics in Medicine & Biology
Volume:
68
Issue:
3
ISSN:
0031-9155
Page Range / eLocation ID:
Article No. 035021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Color Doppler twinkling on kidney stones and other pathological mineralizations is theorized to arise from stable microbubbles, which suggests twinkling will be sensitive to ambient gas. Here, lab-grown cholesterol, calcium phosphate, and uric acid crystals were imaged with ultrasound in water while varying oxygen, carbon dioxide, and nitrogen levels. Twinkling was found to increase on cholesterol in elevated oxygen, cholesterol and calcium phosphate in elevated carbon dioxide, and no crystals in elevated nitrogen. These results support the crevice microbubble theory of twinkling and suggest gases may be varied to enhance twinkling on some mineralizations. 
    more » « less
  2. Safety of biomedical ultrasound largely depends on controlling cavitation bubbles in vivo, yet bubble nuclei in biological tissues remain unexplored compared to water. This study evaluates the effects of elastic modulus (E) and impurities on bubble nuclei available for cavitation in tissue-mimicking polyacrylamide (PA) hydrogels. A 1.5 MHz focused ultrasound transducer with f# = 0.7 was used to induce cavitation in 17.5%, 20%, and 22.5% v/v PA hydrogels using 10-ms pulses with pressures up to peak negative pressure (p−) = 35 MPa. Cavitation was monitored at 0.075 ms through high-speed photography at 40 000 fps. At p− = 29 MPa for all hydrogels, cavitation occurred at random locations within the −6 dB focal area [9.4 × 1.2 mm (p−)]. Increasing p− to 35 MPa increased bubble location consistency and caused shock scattering in the E = 282 MPa hydrogels; as the E increased to 300 MPa, bubble location consistency decreased ( p = 0.045). Adding calcium phosphate or cholesterol at 0.25% w/v or bovine serum albumin at 5% or 10% w/v in separate 17.5% PA as impurities decreased the cavitation threshold from p− = 13.2 MPa for unaltered PA to p− = 11.6 MPa, p− = 7.3 MPa, p− = 9.7 MPa, and p− = 7.5 MPa, respectively. These results suggest that both E and impurities affect the bubble nuclei available for cavitation in tissue-mimicking hydrogels. 
    more » « less
  3. Abstract Calcium oxalate (CaOx) is the major phase in kidney stones and the primary calcium storage medium in plants. CaOx can form crystals with different lattice types, water contents, and crystal structures. However, the conditions and mechanisms leading to nucleation of particular CaOx crystals are unclear. Here, liquid‐cell transmission electron microscopy and atomistic molecular dynamics simulations are used to study in situ CaOx nucleation at different conditions. The observations reveal that rhombohedral CaOx monohydrate (COM) can nucleate via a classical pathway, while square COM can nucleate via a non‐classical multiphase pathway. Citrate, a kidney stone inhibitor, increases the solubility of calcium by forming calcium‐citrate complexes and blocks oxalate ions from approaching calcium. The presence of multiple hydrated ionic species draws additional water molecules into nucleating CaOx dihydrate crystals. These findings reveal that by controlling the nucleation pathways one can determine the macroscale crystal structure, hydration state, and morphology of CaOx. 
    more » « less
  4. null (Ed.)
    To treat impairments in hard tissues or overcome pathological calcification in soft tissues, a detailed understanding of mineralization pathways of calcium phosphate materials is needed. Here, we report a detailed mechanistic study of hydroxyapatite (HA) mineralization pathways in an artificial saliva solution via in situ liquid cell transmission electron microscopy (TEM). It is found that the mineralization of HA starts by forming ion-rich and ion-poor solutions in the saliva solution, followed by coexistence of the classical and nonclassical nucleation processes. For the nonclassical path, amorphous calcium phosphate (ACP) functions as the substrate for HA nucleation on the ACP surface, while the classical path features direct HA nucleation from the solution. The growth of HA crystals on the surface of ACP is accompanied by the ACP dissolution process. The discoveries reported in this work are important to understand the physiological and pathological formation of HA minerals, as well as to engineer the biomineralization process for bone healing and hard tissue repairs. 
    more » « less
  5. Rizzo, Piervincenzo; Su, Zhongqing; Ricci, Fabrizio; Peters, Kara J (Ed.)
    he further signal processing for wave signal extraction as in displacement-based detection systems. However, due to both interfering lights coming from sample surface, the collected light in a fiber-optic-based Sagnac interferometer system is very weak when applied to biological tissue, where the refractive index of tissue and air are close. The objective of this paper is to study the feasibility using a compact fiber-optic Sagnac interferometer to detect vibrational waves on a biological tissue surface. An actuator made with a 10mm x 10mm x 3mm piezoelectric chip loaded on a 3D-printed polymer-made prism-shaped wedge (1cm x1cm x1cm) was used for ultrasound surface wave excitation. A bulk copolymer-in-oil phantom (100mm diameter with 27mm height) was used to mimic biological tissues. A compact fiber-optic-based interferometer was used to detect the propagation of surface waves in the tissue mimicking phantom and the wave propagation speeds were determined based on the wave detection. Young’s modulus was calculated based on the measured wave speed on the phantom surface. A tensile testing machine was used to measure the Young’s modulus in a compression mode as a comparison. The results were compared. 
    more » « less