Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The effect of crystal composition and environment on the color Doppler ultrasound twinkling artifactAbstract Objective.Pathological mineralizations form throughout the body and can be difficult to detect using conventional imaging methods. Color Doppler ultrasound twinkling highlights ∼60% of kidney stones with a rapid color shift and is theorized to arise from crevice microbubbles as twinkling disappears on kidney stones at elevated pressures and scratched acrylic balls in ethanol. Twinkling also sometimes appears on other pathological mineralizations; however, it is unclear whether the etiology of twinkling is the same as for kidney stones.Approach.In this study, five cholesterol, calcium phosphate, and uric acid crystals were grownin vitroand imaged in Doppler mode with a research ultrasound system and L7-4 transducer in water. To evaluate the influence of pressure on twinkling, the same crystals were imaged in a high-pressure chamber. Then, the effect of surface tension on twinkling was evaluated by imaging crystals in different concentrations of surfactant (1%, 2%, 3%, 4%) and ethanol (10%, 30%, 50%, 70%), artificial urine, bovine blood, and a tissue-mimicking phantom.Main results. Results showed that all crystals twinkled in water, with cholesterol twinkling significantly more than calcium phosphate and uric acid. When the ambient pressure was increased, twinkling disappeared for all tested crystals when pressures reached 7 MPa (absolute) and reappeared when returned to ambient pressure (0.1 MPa). Similarly, twinkling across all crystals decreased with surface tension when imaged in the surfactant and ethanol (statistically significant when surface tension <22 mN m−1) and decreased in blood (surface tension = 52.7 mN m−1) but was unaffected by artificial urine (similar surface tension to water). In the tissue-mimicking phantom, twinkling increased for cholesterol and calcium phosphate crystals with no change observed in uric acid crystals.Significance.Overall, these results support the theory that bubbles are present on crystals and cause twinkling, which could be leveraged to improve twinkling for the detection of other pathological mineralizations.more » « less
-
Color Doppler twinkling on kidney stones and other pathological mineralizations is theorized to arise from stable microbubbles, which suggests twinkling will be sensitive to ambient gas. Here, lab-grown cholesterol, calcium phosphate, and uric acid crystals were imaged with ultrasound in water while varying oxygen, carbon dioxide, and nitrogen levels. Twinkling was found to increase on cholesterol in elevated oxygen, cholesterol and calcium phosphate in elevated carbon dioxide, and no crystals in elevated nitrogen. These results support the crevice microbubble theory of twinkling and suggest gases may be varied to enhance twinkling on some mineralizations.more » « less
-
Safety of biomedical ultrasound largely depends on controlling cavitation bubbles in vivo, yet bubble nuclei in biological tissues remain unexplored compared to water. This study evaluates the effects of elastic modulus (E) and impurities on bubble nuclei available for cavitation in tissue-mimicking polyacrylamide (PA) hydrogels. A 1.5 MHz focused ultrasound transducer with f# = 0.7 was used to induce cavitation in 17.5%, 20%, and 22.5% v/v PA hydrogels using 10-ms pulses with pressures up to peak negative pressure (p−) = 35 MPa. Cavitation was monitored at 0.075 ms through high-speed photography at 40 000 fps. At p− = 29 MPa for all hydrogels, cavitation occurred at random locations within the −6 dB focal area [9.4 × 1.2 mm (p−)]. Increasing p− to 35 MPa increased bubble location consistency and caused shock scattering in the E = 282 MPa hydrogels; as the E increased to 300 MPa, bubble location consistency decreased ( p = 0.045). Adding calcium phosphate or cholesterol at 0.25% w/v or bovine serum albumin at 5% or 10% w/v in separate 17.5% PA as impurities decreased the cavitation threshold from p− = 13.2 MPa for unaltered PA to p− = 11.6 MPa, p− = 7.3 MPa, p− = 9.7 MPa, and p− = 7.5 MPa, respectively. These results suggest that both E and impurities affect the bubble nuclei available for cavitation in tissue-mimicking hydrogels.more » « less
An official website of the United States government
