We derive empirical constraints on the nucleosynthetic yields of nitrogen by incorporating N enrichment into our previously developed and empirically tuned multizone galactic chemical evolution model. We adopt a metallicity-independent (‘primary’) N yield from massive stars and a metallicity-dependent (‘secondary’) N yield from AGB stars. In our model, galactic radial zones do not evolve along the observed [N/O]–[O/H] relation, but first increase in [O/H] at roughly constant [N/O], then move upward in [N/O] via secondary N production. By t ≈ 5 Gyr, the model approaches an equilibrium [N/O]–[O/H] relation, which traces the radial oxygen gradient. Reproducing the [N/O]–[O/H] trend observed in extragalactic systems constrains the ratio of IMF-averaged N yields to the IMF-averaged O yield of core-collapse supernovae. We find good agreement if we adopt $y_\text{N}^\text{CC}/y_\text{O}^\text{CC}=0.024$ and $y_\text{N}^\text{AGB}/y_\text{O}^\text{CC} = 0.062(Z/Z_\odot)$. For the theoretical AGB yields we consider, simple stellar populations release half their N after only ∼250 Myr. Our model reproduces the [N/O]–[O/H] relation found for Milky Way stars in the APOGEE survey, and it reproduces (though imperfectly) the trends of stellar [N/O] with age and [O/Fe]. The metallicity-dependent yield plays the dominant role in shaping the gas-phase [N/O]–[O/H] relation, but the AGB time-delay is required to match the stellar age and more »
- Publication Date:
- NSF-PAR ID:
- 10395041
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 520
- Issue:
- 1
- Page Range or eLocation-ID:
- p. 782-803
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT We study the production of barium (Ba) and strontium (Sr) in ultrafaint dwarf (UFDs) galaxies. Both r- and s- processes produce these elements, and one can infer the contribution of the r-process from the characteristic r-process abundance pattern, whereas the s-process contribution remains largely unknown. We show that the current s-process yield from asymptotic giant branch (AGB) stars is not sufficient to explain the Ba and Sr abundances observed in UFDs. Production of these elements would need to be efficient from the beginning of star formation in the galaxies. The discrepancy of nearly or more than 1 dex is not reconciled even if we consider s-process in super-AGB stars. We consider a possible resolution by assuming rotating massive stars (RMSs) and electron-capture supernovae (ECSNe) as additional contributors. We find that the RMSs could be the origin of Ba in UFDs if ∼10 per cent of massive stars are rotating at 300 km s−1. As for ECSNe, we argue that their fraction is less than 2 per cent of core-collapse supernova. It narrows the progenitor mass-range to ${\lesssim}0.1\, \mathrm{M}_\odot$ at −3 ≲ [Fe/H] ≲ −2. We also explore another resolution by modifying the stellar initial mass function (IMF) in UFDs and findmore »
-
Asymptotic Giant Branch (AGB) stars play a key role in the chemical evolution of galaxies. These stars are the fundamental stellar site for the production of light elements such as C, N and F, and half of the elements heavier than Fe via the slow neutron capture process (s-process). Hence, detailed computational models of AGB stars’ evolution and nucleosynthesis are essential for galactic chemical evolution. In this work, we discuss the progress in updating the NuGrid data set of AGB stellar models and abundance yields. All stellar models have been computed using the MESA stellar evolution code, coupled with the post-processing mppnp code to calculate the full nucleosynthesis. The final data set will include the initial masses Mini/M⊙ = 1, 1.65, 2, 3, 4, 5, 6 and 7 for initial metallicities Z = 0.0001, 0.001, 0.006, 0.01, 0.02 and 0.03. Observed s-process abundances on the surfaces of evolved stars as well as the typical light elements in the composition of H-deficient post-AGB stars are reproduced. A key short-term goal is to complete and expand the AGB stars data set for the full metallicity range. Chemical yield tables are provided for the available models.
-
ABSTRACT We develop a hybrid model of galactic chemical evolution that combines a multiring computation of chemical enrichment with a prescription for stellar migration and the vertical distribution of stellar populations informed by a cosmological hydrodynamic disc galaxy simulation. Our fiducial model adopts empirically motivated forms of the star formation law and star formation history, with a gradient in outflow mass loading tuned to reproduce the observed metallicity gradient. With this approach, the model reproduces many of the striking qualitative features of the Milky Way disc’s abundance structure: (i) the dependence of the [O/Fe]–[Fe/H] distribution on radius Rgal and mid-plane distance |z|; (ii) the changing shapes of the [O/H] and [Fe/H] distributions with Rgal and |z|; (iii) a broad distribution of [O/Fe] at sub-solar metallicity and changes in the [O/Fe] distribution with Rgal, |z|, and [Fe/H]; (iv) a tight correlation between [O/Fe] and stellar age for [O/Fe] > 0.1; (v) a population of young and intermediate-age α-enhanced stars caused by migration-induced variability in the Type Ia supernova rate; (vi) non-monotonic age–[O/H] and age–[Fe/H] relations, with large scatter and a median age of ∼4 Gyr near solar metallicity. Observationally motivated models with an enhanced star formation rate ∼2 Gyr ago improve agreement with the observed age–[Fe/H] and age–[O/H] relations, but worsen agreement with the observed age–[O/Fe]more »
-
Abstract The APOGEE Open Cluster Chemical Abundances and Mapping survey is used to probe the chemical evolution of the s-process element cerium in the Galactic disk. Cerium abundances were derived from measurements of Ce ii lines in the APOGEE spectra using the Brussels Automatic Code for Characterizing High Accuracy Spectra in 218 stars belonging to 42 open clusters. Our results indicate that, in general, for ages < 4 Gyr, younger open clusters have higher [Ce/Fe] and [Ce/ α -element] ratios than older clusters. In addition, metallicity segregates open clusters in the [Ce/X]–age plane (where X can be H, Fe, or the α -elements O, Mg, Si, or Ca). These metallicity-dependent relations result in [Ce/Fe] and [Ce/ α ] ratios with ages that are not universal clocks. Radial gradients of [Ce/H] and [Ce/Fe] ratios in open clusters, binned by age, were derived for the first time, with d [Ce/H]/ d R GC being negative, while d [Ce/Fe]/ d R GC is positive. [Ce/H] and [Ce/Fe] gradients are approximately constant over time, with the [Ce/Fe] gradient becoming slightly steeper, changing by ∼+0.009 dex kpc −1 Gyr −1 . Both the [Ce/H] and [Ce/Fe] gradients are shifted to lower values of [Ce/H] andmore »
-
ABSTRACT We test the hypothesis that the observed first-peak (Sr, Y, Zr) and second-peak (Ba) s-process elemental abundances in low-metallicity Milky Way stars, and the abundances of the elements Mo and Ru, can be explained by a pervasive r-process contribution originating in neutrino-driven winds from highly magnetic and rapidly rotating proto-neutron stars (proto-NSs). We construct chemical evolution models that incorporate recent calculations of proto-NS yields in addition to contributions from asymptotic giant branch stars, Type Ia supernovae, and two alternative sets of yields for massive star winds and core-collapse supernovae. For non-rotating massive star yields from either set, models without proto-NS winds underpredict the observed s-process peak abundances by 0.3–$1\, \text{dex}$ at low metallicity, and they severely underpredict Mo and Ru at all metallicities. Models incorporating wind yields from proto-NSs with spin periods P ∼ 2–$5\, \text{ms}$ fit the observed trends for all these elements well. Alternatively, models omitting proto-NS winds but adopting yields of rapidly rotating massive stars, with vrot between 150 and $300\, \text{km}\, \text{s}^{-1}$, can explain the observed abundance levels reasonably well for [Fe/H] < −2. These models overpredict [Sr/Fe] and [Mo/Fe] at higher metallicities, but with a tuned dependence of vrot on stellar metallicity they mightmore »