skip to main content

This content will become publicly available on March 1, 2023

Title: The NuGrid AGB Evolution and Nucleosynthesis Data Set
Asymptotic Giant Branch (AGB) stars play a key role in the chemical evolution of galaxies. These stars are the fundamental stellar site for the production of light elements such as C, N and F, and half of the elements heavier than Fe via the slow neutron capture process (s-process). Hence, detailed computational models of AGB stars’ evolution and nucleosynthesis are essential for galactic chemical evolution. In this work, we discuss the progress in updating the NuGrid data set of AGB stellar models and abundance yields. All stellar models have been computed using the MESA stellar evolution code, coupled with the post-processing mppnp code to calculate the full nucleosynthesis. The final data set will include the initial masses Mini/M⊙ = 1, 1.65, 2, 3, 4, 5, 6 and 7 for initial metallicities Z = 0.0001, 0.001, 0.006, 0.01, 0.02 and 0.03. Observed s-process abundances on the surfaces of evolved stars as well as the typical light elements in the composition of H-deficient post-AGB stars are reproduced. A key short-term goal is to complete and expand the AGB stars data set for the full metallicity range. Chemical yield tables are provided for the available models.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. The slow neutron-capture process (s-process) efficiency in low-mass AGB stars (1.5 < M/M⊙ < 3) critically depends on how mixing processes in stellar interiors are handled, which is still affected by considerable uncertainties. In this work, we compute the evolution and nucleosynthesis of low-mass AGB stars at low metallicities using the MESA stellar evolution code. The combined data set includes models with initial masses Mini/M⊙=2 and 3 for initial metallicities Z=0.001 and 0.002. The nucleosynthesis was calculated for all relevant isotopes by post-processing with the NuGrid mppnp code. Using these models, we show the impact of the uncertainties affecting the main mixing processes on heavy element nucleosynthesis, such as convection and mixing at convective boundaries. We finally compare our theoretical predictions with observed surface abundances on low-metallicity stars. We find that mixing at the interface between the He-intershell and the CO-core has a critical impact on the s-process at low metallicities, and its importance is comparable to convective boundary mixing processes under the convective envelope, which determine the formation and size of the 13C-pocket. Additionally, our results indicate that models with very low to no mixing below the He-intershell during thermal pulses, and with a 13C-pocket size of at leastmore »∼3 × 10−4 M⊙, are strongly favored in reproducing observations. Online access to complete yield data tables is also provided.« less
  2. Abstract The APOGEE Open Cluster Chemical Abundances and Mapping survey is used to probe the chemical evolution of the s-process element cerium in the Galactic disk. Cerium abundances were derived from measurements of Ce ii lines in the APOGEE spectra using the Brussels Automatic Code for Characterizing High Accuracy Spectra in 218 stars belonging to 42 open clusters. Our results indicate that, in general, for ages < 4 Gyr, younger open clusters have higher [Ce/Fe] and [Ce/ α -element] ratios than older clusters. In addition, metallicity segregates open clusters in the [Ce/X]–age plane (where X can be H, Fe, or the α -elements O, Mg, Si, or Ca). These metallicity-dependent relations result in [Ce/Fe] and [Ce/ α ] ratios with ages that are not universal clocks. Radial gradients of [Ce/H] and [Ce/Fe] ratios in open clusters, binned by age, were derived for the first time, with d [Ce/H]/ d R GC being negative, while d [Ce/Fe]/ d R GC is positive. [Ce/H] and [Ce/Fe] gradients are approximately constant over time, with the [Ce/Fe] gradient becoming slightly steeper, changing by ∼+0.009 dex kpc −1 Gyr −1 . Both the [Ce/H] and [Ce/Fe] gradients are shifted to lower values of [Ce/H] andmore »[Ce/Fe] for older open clusters. The chemical pattern of Ce in open clusters across the Galactic disk is discussed within the context of s-process yields from asymptotic giant branch (AGB) stars, gigayear time delays in Ce enrichment of the interstellar medium, and the strong dependence of Ce nucleosynthesis on the metallicity of its AGB stellar sources.« less
  3. Abstract

    We demonstrate that using up to seven stellar abundance ratios can place observational constraints on the star formation histories (SFHs) of Local Group dSphs, using Sculptor dSph as a test case. We use a one-zone chemical evolution model to fit the overall abundance patterns ofαelements (which probe the core-collapse supernovae that occur shortly after star formation),s-process elements (which probe AGB nucleosynthesis at intermediate delay times), and iron-peak elements (which probe delayed Type Ia supernovae). Our best-fit model indicates that Sculptor dSph has an ancient SFH, consistent with previous estimates from deep photometry. However, we derive a total star formation duration of ∼0.9 Gyr, which is shorter than photometrically derived SFHs. We explore the effect of various model assumptions on our measurement and find that modifications to these assumptions still produce relatively short SFHs of duration ≲1.4 Gyr. Our model is also able to compare sets of predicted nucleosynthetic yields for supernovae and AGB stars, and can provide insight into the nucleosynthesis of individual elements in Sculptor dSph. We find that observed [Mn/Fe] and [Ni/Fe] trends are most consistent with sub-MChType Ia supernova models, and that a combination of “prompt” (delay times similar to core-collapse supernovae) and “delayed” (minimum delaymore »times ≳50 Myr)r-process events may be required to reproduce observed [Ba/Mg] and [Eu/Mg] trends.

    « less
  4. null (Ed.)
    ABSTRACT The abundances of neutron (n)-capture elements in the carbon-enhanced metal-poor (CEMP)-r/s stars agree with predictions of intermediate n-density nucleosynthesis, at Nn ∼ 1013–1015 cm−3, in rapidly accreting white dwarfs (RAWDs). We have performed Monte Carlo simulations of this intermediate-process (i-process) nucleosynthesis to determine the impact of (n,γ) reaction rate uncertainties of 164 unstable isotopes, from 131I to 189Hf, on the predicted abundances of 18 elements from Ba to W. The impact study is based on two representative one-zone models with constant values of Nn = 3.16 × 1014 and 3.16 × 1013 cm−3 and on a multizone model based on a realistic stellar evolution simulation of He-shell convection entraining H in a RAWD model with [Fe/H] = −2.6. For each of the selected elements, we have identified up to two (n,γ) reactions having the strongest correlations between their rate variations constrained by Hauser–Feshbach computations and the predicted abundances, with the Pearson product–moment correlation coefficients |rP| > 0.15. We find that the discrepancies between the predicted and observed abundances of Ba and Pr in the CEMP-i star CS 31062−050 are significantly diminished if the rate of 137Cs(n,γ)138Cs is reduced and the rates of 141Ba(n,γ)142Ba or 141La(n,γ)142La increased. The uncertainties of temperature-dependent β-decay rates of the same unstable isotopes have amore »negligible effect on the predicted abundances. One-zone Monte Carlo simulations can be used instead of computationally time-consuming multizone Monte Carlo simulations in reaction rate uncertainty studies if they use comparable values of Nn. We discuss the key challenges that RAWD simulations of i process for CEMP-i stars meet by contrasting them with recently published low-Z asymptotic giant branch (AGB) i process.« less
  5. Abstract

    Analysis of inclusions in primitive meteorites reveals that several short-lived radionuclides (SLRs) with half-lives of 0.1–100 Myr existed in the early solar system (ESS). We investigate the ESS origin of107Pd,135Cs, and182Hf, which are produced byslowneutron captures (thes-process) in asymptotic giant branch (AGB) stars. We modeled the Galactic abundances of these SLRs using theOMEGA+galactic chemical evolution (GCE) code and two sets of mass- and metallicity-dependent AGB nucleosynthesis yields (Monash and FRUITY). Depending on the ratio of the mean-lifeτof the SLR to the average length of time between the formations of AGB progenitorsγ, we calculate timescales relevant for the birth of the Sun. Ifτ/γ≳ 2, we predict self-consistent isolation times between 9 and 26 Myr by decaying the GCE predicted107Pd/108Pd,135Cs/133Cs, and182Hf/180Hf ratios to their respective ESS ratios. The predicted107Pd/182Hf ratio indicates that our GCE models are missing 9%–73% of107Pd and108Pd in the ESS. This missing component may have come from AGB stars of higher metallicity than those that contributed to the ESS in our GCE code. Ifτ/γ≲ 0.3, we calculate instead the time (TLE) from the last nucleosynthesis event that added the SLRs into the presolar matter to the formation of the oldest solids in the ESS. For the 2M,Z= 0.01more »Monash model we find a self-consistent solution ofTLE= 25.5 Myr.

    « less