Abstract TaxonomyPotato virus Xis the type‐member of the plant‐infectingPotexvirusgenus in the familyAlphaflexiviridae. Physical propertiesPotato virus X (PVX) virions are flexuous filaments 460–480 nm in length. Virions are 13 nm in diameter and have a helical pitch of 3.4 nm. The genome is approximately 6.4 kb with a 5′ cap and 3′ poly(A) terminus. PVX contains five open reading frames, four of which are essential for cell‐to‐cell and systemic movement. One protein encodes the viral replicase. Cellular inclusions, known as X‐bodies, occur near the nucleus of virus‐infected cells. HostsThe primary host is potato, but it infects a wide range of dicots. Diagnostic hosts includeDatura stramoniumandNicotiana tabacum. PVX is transmitted in nature by mechanical contact. Useful websitehttps://talk.ictvonline.org/ictv‐reports/ictv_online_report/positive‐sense‐rna‐viruses/w/alphaflexiviridae/1330/genus‐potexvirus
more »
« less
Detection of Borrelia miyamotoi and Powassan Virus Lineage II (Deer Tick Virus) from Odocoileus virginianus Harvested Ixodes scapularis in Oklahoma
- Award ID(s):
- 1920946
- PAR ID:
- 10395083
- Date Published:
- Journal Name:
- Vector-Borne and Zoonotic Diseases
- Volume:
- 22
- Issue:
- 4
- ISSN:
- 1530-3667
- Page Range / eLocation ID:
- 209 to 216
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Orsay virus infection in the nematodeCaenorhabditis eleganspresents an opportunity to study host‐virus interactions in an easily culturable, whole‐animal host. Previously, a major limitation ofC. elegansas a model for studying antiviral immunity was the lack of viruses known to naturally infect the worm. With the 2011 discovery of the Orsay virus, a naturally occurring viral pathogen,C. eleganshas emerged as a compelling model for research on antiviral defense. From the perspective of the host, the genetic tractability ofC. elegansenables mechanistic studies of antiviral immunity while the transparency of this animal allows for the observation of subcellular processes in vivo. Preparing infective virus filtrate and performing infections can be achieved with relative ease in a laboratory setting. Moreover, several tools are available to measure the outcome of infection. Here, we describe workflows for generating infective virus filtrate, achieving reproducible infection ofC. elegans, and assessing the outcome of viral infection using molecular biology approaches and immunofluorescence. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of Orsay virus filtrate Support Protocol: SynchronizeC. elegansdevelopment by bleaching Basic Protocol 2: Orsay virus infection Basic Protocol 3: Quantification of Orsay virus RNA1/RNA2 transcript levels by qRT‐PCR Basic Protocol 4: Quantification of infection rate and fluorescence in situ hybridization (FISH) fluorescence intensity Basic Protocol 5: Immunofluorescent labeling of dsRNA in virus‐infected intestinal tissuemore » « less
-
We extend a recently proposed kinetic theory of virus capsid assembly based on Model A kinetics and study the dynamics of the interconversion of virus capsids of different sizes triggered by a quench, that is, by sudden changes in the solution conditions. The work is inspired by in vitro experiments on functionalized coat proteins of the plant virus cowpea chlorotic mottle virus, which undergo a reversible transition between two different shell sizes (T = 1 and T = 3) upon changing the acidity and salinity of the solution. We find that the relaxation dynamics are governed by two time scales that, in almost all cases, can be identified as two distinct processes. Initially, the monomers and one of the two types of capsids respond to the quench. Subsequently, the monomer concentration remains essentially constant, and the conversion between the two capsid species completes. In the intermediate stages, a long-lived metastable steady state may present itself, where the thermodynamically less stable species predominate. We conclude that a Model A based relaxational model can reasonably describe the early and intermediate stages of the conversion experiments. However, it fails to provide a good representation of the time evolution of the state of assembly of the coat proteins in the very late stages of equilibration when one of the two species disappears from the solution. It appears that explicitly incorporating the nucleation barriers to assembly and disassembly is crucial for an accurate description of the experimental findings, at least under conditions where these barriers are sufficiently large.more » « less
An official website of the United States government

