Abstract Mucus is an important component of airway host defenses that acts by enabling the trapping and clearance of infectious materials such as bacteria and viruses. It can be difficult, however, to design experiments that independently determine the extent to which mucus contributes to innate barrier functions in the lung. Here, we provide detailed protocols to collect mucus from human airway epithelial cultures and evaluate how the properties of mucus impact mucociliary transport and protection from viral infection. We include recommended test parameters depending on the specific research question as it relates to respiratory infectious diseases. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Analysis of mucociliary transport and ciliary beat frequency in HAE cultures Basic Protocol 2: Collection of mucus from HAE cultures Basic Protocol 3: Transplantation of mucus to HAE cultures and infection with virus
more »
« less
Orsay Virus Infection in Caenorhabditis elegans
Abstract Orsay virus infection in the nematodeCaenorhabditis eleganspresents an opportunity to study host‐virus interactions in an easily culturable, whole‐animal host. Previously, a major limitation ofC. elegansas a model for studying antiviral immunity was the lack of viruses known to naturally infect the worm. With the 2011 discovery of the Orsay virus, a naturally occurring viral pathogen,C. eleganshas emerged as a compelling model for research on antiviral defense. From the perspective of the host, the genetic tractability ofC. elegansenables mechanistic studies of antiviral immunity while the transparency of this animal allows for the observation of subcellular processes in vivo. Preparing infective virus filtrate and performing infections can be achieved with relative ease in a laboratory setting. Moreover, several tools are available to measure the outcome of infection. Here, we describe workflows for generating infective virus filtrate, achieving reproducible infection ofC. elegans, and assessing the outcome of viral infection using molecular biology approaches and immunofluorescence. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of Orsay virus filtrate Support Protocol: SynchronizeC. elegansdevelopment by bleaching Basic Protocol 2: Orsay virus infection Basic Protocol 3: Quantification of Orsay virus RNA1/RNA2 transcript levels by qRT‐PCR Basic Protocol 4: Quantification of infection rate and fluorescence in situ hybridization (FISH) fluorescence intensity Basic Protocol 5: Immunofluorescent labeling of dsRNA in virus‐infected intestinal tissue
more »
« less
- Award ID(s):
- 2301657
- PAR ID:
- 10557719
- Publisher / Repository:
- Current Protocols
- Date Published:
- Journal Name:
- Current Protocols
- Volume:
- 4
- Issue:
- 7
- ISSN:
- 2691-1299
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The pre-clinical development of antiviral agents involves experimental trials in animals and ferrets as an animal model for the study of SARS-CoV-2. Here, we used mathematical models and experimental data to characterize the within-host infection dynamics of SARS-CoV-2 in ferrets. We also performed a global sensitivity analysis of model parameters impacting the characteristics of the viral infection. We provide estimates of the viral dynamic parameters in ferrets, such as the infection rate, the virus production rate, the infectious virus proportion, the infected cell death rate, the virus clearance rate, as well as other related characteristics, including the basic reproduction number, pre-peak infectious viral growth rate, post-peak infectious viral decay rate, pre-peak infectious viral doubling time, post-peak infectious virus half-life, and the target cell loss in the respiratory tract. These parameters and indices are not significantly different between animals infected with viral strains isolated from the environment and isolated from human hosts, indicating a potential for transmission from fomites. While the infection period in ferrets is relatively short, the similarity observed between our results and previous results in humans supports that ferrets can be an appropriate animal model for SARS-CoV-2 dynamics-related studies, and our estimates provide helpful information for such studies.more » « less
-
Upon sensing viral RNA, mammalian RIG-I-like receptors (RLRs) activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well studied. In contrast, the downstream signaling mechanisms for invertebrate RLRs are much less clear. For example, theCaenorhabditis elegansRLR DRH-1 lacks annotated CARDs and up-regulates the distinct output of RNA interference. Here, we found that similar to mammal RLRs, DRH-1 signals through two tandem CARDs (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation inC. elegans. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into antiviral signaling inC. elegans, highlighting unexpected parallels in RLR signaling betweenC. elegansand mammals.more » « less
-
Jaronski, Stefan (Ed.)Abstract An important goal of disease ecology is to understand trophic interactions influencing the host–pathogen relationship. This study focused on the effects of diet and immunity on the outcome of viral infection for the polyphagous butterfly, Vanessa cardui Linnaeus (Lepidoptera: Nymphalidae) (painted lady). Specifically, we aimed to understand the role that larval host plants play when fighting a viral pathogen. Larvae were orally inoculated with the entomopathogenic virus, Junonia coenia densovirus (JcDV) (Family Parvoviridae, subfamily Densovirinae, genus Protoambidensovirus, species Lepidopteran protoambidensovirus 1) and reared on two different host plants (Lupinus albifrons Bentham (Fabales: Fabaceae) or Plantago lanceolata Linnaeus (Lamiales: Plantaginaceae)). Following viral infection, the immune response (i.e., phenoloxidase [PO] activity), survival to adulthood, and viral load were measured for individuals on each host plant. We found that the interaction between the immune response and survival of the viral infection was host plant dependent. The likelihood of survival was lowest for infected larvae exhibiting suppressed PO activity and feeding on P. lanceolata, providing some evidence that PO activity may be an important defense against viral infection. However, for individuals reared on L. albifrons, the viral infection had a negligible effect on the immune response, and these individuals also had higher survival and lower viral load when infected with the pathogen compared to the controls. Therefore, we suggest that host plant modifies the effects of JcDV infection and influences caterpillars’ response when infected with the virus. Overall, we conclude that the outcome of viral infection is highly dependent upon diet, and that certain host plants can provide protection from pathogens regardless of immunity.more » « less
-
Abstract Although the type‐I interferon (IFN‐I) response is considered vertebrate‐specific, recent findings about the Intracellular Pathogen Response (IPR) in nematodeCaenorhabditis elegansindicate that there are similarities between these two transcriptional immunological programs. The IPR is induced during infection with natural intracellular fungal and viral pathogens of the intestine and promotes resistance against these pathogens. Similarly, the IFN‐I response is induced by viruses and other intracellular pathogens and promotes resistance against infection. Whether the IPR and the IFN‐I response evolved in a divergent or convergent manner is an unanswered and exciting question, which could be addressed by further studies of immunity against intracellular pathogens inC. elegansand other simple host organisms. Here we highlight similar roles played by RIG‐I‐like receptors, purine metabolism enzymes, proteotoxic stressors, and transcription factors to induce the IPR and IFN‐I response, as well as the similar consequences of these defense programs on organismal development.more » « less
An official website of the United States government

