skip to main content


Title: In-plane thermoelectric properties of graphene/xBN/graphene van der Waals heterostructures
2D materials have attracted broad attention from researchers for their unique electronic proper-ties, which may be been further enhanced by combining 2D layers into vertically stacked van der Waals heterostructures. Among the superlative properties of 2D systems, thermoelectric energy (TE) conversion promises to enable targeted energy conversion, localized thermal management, and thermal sensing. However, TE conversion efficiency remains limited by the inherent tradeoff between conductivity and thermopower. In this paper, we use first-principles calculation to study graphene-based van der Waals heterostructures (vdWHs) composed of graphene layers and hexagonal boron nitride (h-BN). We compute the electronic band structures of heterostructured systems using Quantum Espresso and their thermoelectric (TE) properties using BoltzTrap2. Our results have shown that stacking layers of these 2D materials opens a bandgap, increasing it with the number of h-BN interlayers, which significantly improves the power factor (PF). We predict a PF of ~1.0x10 11 W/K 2 .m.s for the vdWHs, nearly double compared to 5x10 10 W/K 2 .m.s that we obtained for single-layer graphene. This study gives important information on the effect of stacking layers of 2D materials and points toward new avenues to optimize the TE properties of vdWHs.  more » « less
Award ID(s):
1902352
NSF-PAR ID:
10395102
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Physics: Condensed Matter
ISSN:
0953-8984
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Twisting or sliding two-dimensional crystals with respect to each other gives rise to moiré patterns determined by the difference in their periodicities. Such lattice mismatches can exist for several reasons: differences between the intrinsic lattice constants of the two layers, as is the case for graphene on BN; rotations between the two lattices, as is the case for twisted bilayer graphene; and strains between two identical layers in a bilayer. Moiré patterns are responsible for a number of new electronic phenomena observed in recent years in van der Waals heterostructures, including the observation of superlattice Dirac points for graphene on BN, collective electronic phases in twisted bilayers and twisted double bilayers, and trapping of excitons in the moiré potential. An open question is whether we can use moiré potentials to achieve strong trapping potentials for electrons. Here, we report a technique to achieve deep, deterministic trapping potentials via strain-based moiré engineering in van der Waals materials. We use strain engineering to create on-demand soliton networks in transition metal dichalcogenides. Intersecting solitons form a honeycomb-like network resulting from the three-fold symmetry of the adhesion potential between layers. The vertices of this network occur in bound pairs with different interlayer stacking arrangements. One vertex of the pair is found to be an efficient trap for electrons, displaying two states that are deeply confined within the semiconductor gap and have a spatial extent of 2 nm. Soliton networks thus provide a path to engineer deeply confined states with a strain-dependent tunable spatial separation, without the necessity of introducing chemical defects into the host materials. 
    more » « less
  2. Abstract

    Pivotal to functional van der Waals stacked flexible electronic/excitonic/spintronic/thermoelectric chips is the synergy amongst constituent layers. However; the current techniques viz. sequential chemical vapor deposition, micromechanical/wet‐chemical transfer are mostly limited due to diffused interfaces, and metallic remnants/bubbles at the interface. Inter‐layer‐coupled 2+δ‐dimensional materials, as a new class of materials can be significantly suitable for out‐of‐plane carrier transport and hence prompt response in prospective devices. Here, the discovery of the use of exotic electric field ≈106 V cm1(at microwave hot‐spot) and 2 thermomechanical conditions i.e. pressure ≈1 MPa, T ≈ 200 °C (during solvothermal reaction) to realize 2+δ‐dimensional materials is reported. It is found that PzPzchemical bonds form between the component layers, e.g., CB and CN in G‐BN, MoN and MoB in MoS2‐BN hybrid systems as revealed by X‐ray photoelectron spectroscopy. New vibrational peaks in Raman spectra (BC ≈1320 cm–1for the G‐BN system and MoB ≈365 cm–1for the MoS2‐BN system) are recorded. Tunable mid‐gap formation, along with diodic behavior (knee voltage ≈0.7 V, breakdown voltage ≈1.8 V) in the reduced graphene oxide‐reduced BN oxide (RGO‐RBNO) hybrid system is also observed. Band‐gap tuning in MoS2‐BN system is observed. Simulations reveal stacking‐dependent interfacial charge/potential drops, hinting at the feasibility of next‐generation functional devices/sensors.

     
    more » « less
  3. Abstract

    New technologies are emerging which allow us to manipulate and assemble 2-dimensional (2D) building blocks, such as graphene, into synthetic van der Waals (vdW) solids. Assembly of such vdW solids has enabled novel electronic devices and could lead to control over anisotropic thermal properties through tuning of inter-layer coupling and phonon scattering. Here we report the systematic control of heat flow in graphene-based vdW solids assembled in a layer-by-layer (LBL) fashion. In-plane thermal measurements (between 100 K and 400 K) reveal substrate and grain boundary scattering limit thermal transport in vdW solids composed of one to four transferred layers of graphene grown by chemical vapor deposition (CVD). Such films have room temperature in-plane thermal conductivity of ~400 Wm−1 K−1. Cross-plane thermal conductance approaches 15 MWm−2 K−1for graphene-based vdW solids composed of seven layers of graphene films grown by CVD, likely limited by rotational mismatch between layers and trapped particulates remnant from graphene transfer processes. Our results provide fundamental insight into the in-plane and cross-plane heat carrying properties of substrate-supported synthetic vdW solids, with important implications for emerging devices made from artificially stacked 2D materials.

     
    more » « less
  4. Building on discoveries in graphene and two-dimensional (2D) transition metal dichalcogenides, van der Waals (VdW) layered heterostructures—stacks of such 2D materials—are being extensively explored with resulting new discoveries of novel electronic and magnetic properties in the ultrathin limit. Here, we review a class of naturally occurring heterostructures—the so-called misfits—that combine disparate VdW layers with complex stacking. Exhibiting remarkable structural complexity and diversity of phenomena, misfits provide a platform on which to systematically explore the energetics and local bonding constraints of heterostructures and how they can be used to engineer novel quantum fabrics, electronic responsiveness, and magnetic phenomena. Like traditional classes of layered materials, they are often exfoliatable and thus also incorporatable as units in manually or robotically stacked heterostructures. Here, we review the known classes of misfit structures, the tools for their single crystal and thin film synthesis, the physical properties they exhibit, and the computational and characterization tools available to unravel their complexity. Directions for future research are also discussed. 
    more » « less
  5. Abstract

    The impact of interfaces and heterojuctions on the electronic and thermoelectric transport properties of materials is discussed herein. Recent progress in understanding electronic transport in heterostructures of 2D materials ranging from graphene to transition metal dichalcogenides, their homojunctions (grain boundaries), lateral heterojunctions (such as graphene/MoS2lateral interfaces), and vertical van der Waals heterostructures is reviewed. Work on thermopower in 2D heterojunctions, as well as their applications in creating devices such as resonant tunneling diodes (RTDs), is also discussed. Last, the focus turns to work in 3D heterostructures. While transport in 3D heterostructures has been researched for several decades, here recent progress in theory and simulation of quantum effects on transport via the Wigner and non‐equilibrium Green's functions approaches is reviewed. These simulation techniques have been successfully applied toward understanding the impact of heterojunctions on transport properties and thermopower, which finds applications in energy harvesting, and electron resonant tunneling, with applications in RTDs. In conclusion, tremendous progress has been made in both simulation and experiments toward the goal of understanding transport in heterostructures and this progress will soon be parlayed into improved energy converters and quantum nanoelectronic devices.

     
    more » « less