skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fruit-FIT: Drone Interfaced Multiplexed Sensor Suite to Determine the Fruit Ripeness
Award ID(s):
2138701
PAR ID:
10395123
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2022 IEEE Sensors
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Although they are staple foods in cuisines globally, many commercial fruit varieties have become progressively less flavorful over time. Due to the cost and difficulty associated with flavor phenotyping, breeding programs have long been challenged in selecting for this complex trait. To address this issue, we leveraged targeted metabolomics of diverse tomato and blueberry accessions and their corresponding consumer panel ratings to create statistical and machine learning models that can predict sensory perceptions of fruit flavor. Using these models, a breeding program can assess flavor ratings for a large number of genotypes, previously limited by the low throughput of consumer sensory panels. The ability to predict consumer ratings of liking, sweet, sour, umami, and flavor intensity was evaluated by a 10-fold cross-validation, and the accuracies of 18 different models were assessed. The prediction accuracies were high for most attributes and ranged from 0.87 for sourness intensity in blueberry using XGBoost to 0.46 for overall liking in tomato using linear regression. Further, the best-performing models were used to infer the flavor compounds (sugars, acids, and volatiles) that contribute most to each flavor attribute. We found that the variance decomposition of overall liking score estimates that 42% and 56% of the variance was explained by volatile organic compounds in tomato and blueberry, respectively. We expect that these models will enable an earlier incorporation of flavor as breeding targets and encourage selection and release of more flavorful fruit varieties. 
    more » « less
  2. null (Ed.)
  3. Abstract AimAre different fruit colours related to large‐scale patterns of dispersal, distribution and diversification? Here, we investigate this question for the first time, using phylogenetic approaches in the tribe Gaultherieae (Ericaceae). We test relationships between fruit colour and (a) biogeographic dispersal, (b) elevational and latitudinal species distributions and (c) rates of diversification. LocationGlobal. Time periodRecent to 30 million years ago. Major taxa studiedThe plant tribe Gaultherieae in the family Ericaceae (blueberries and relatives). MethodsWe estimated a new time‐calibrated phylogeny for Gaultherieae. Data on fruit colours and geographic distributions for each species were compiled from published sources and field observations. Using phylogenetic methods, we estimated major dispersal events across the tree and the most likely fruit colour associated with each dispersal event, and tested whether dispersal between major biogeographic regions was equally likely for different fruit colours, and whether dispersal distances were larger for certain colours. We then tested the relationships between fruit colours and geographic variables (latitude, elevation) and diversification rates. ResultsLarge‐scale dispersal events were significantly associated with red‐fruited lineages, even though red‐fruited species were relatively uncommon. Further, different fruit colours were associated with different elevations and latitudes (e.g. red at lower elevations, violet at lower latitudes, white at higher elevations). Violet colour was related to increased diversification rates, leading to more violet‐fruited species globally. Main conclusionsOverall, we show that different fruit colours can significantly impact the large‐scale dispersal, distribution and diversification of plant clades. Furthermore, the interplay between biogeography and fruit‐colour evolution seems to generate “taxon cycles” in fruit colour that may drive variation in fruit colour over macroevolutionary time‐scales. 
    more » « less