skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Parametric Analysis of Negative Capacitance Circuit for Enhanced Vibration Suppression Through Piezoelectric Shunt
Abstract

Piezoelectric transducers are widely employed in vibration control and energy harvesting. The effective electro-mechanical coupling of a piezoelectric system is related to the inherent capacitance of the piezoelectric transducer. It is known that passive vibration suppression through piezoelectric LC shunt can be enhanced with the integration of negative capacitance which however requires a power supply. This research focuses on the parametric investigation of a self-sustainable negative capacitance where the piezoelectric transducer is concurrently used in both vibration suppression and energy harvesting through LC shunt. The basic idea is to utilize the energy harvesting functionality of the piezoelectric transducer to aid the usage of negative capacitance in terms of power supply. Specifically, the power consumption and circuitry performance with respect to negative capacitance circuit design is analyzed thoroughly. Indeed, the net power generation is the difference between available power in the shunt circuit and the power consumption of the negative capacitance circuit. There exists complex tradeoffs between net power generation and the vibration suppression performance when we use different resistance values in the negative capacitance circuit. It is demonstrated through correlated analytical simulation and experimental study that the proper selection of the resistance values in the negative capacitance circuit can result in vibration suppression enhancement as well as improved net power generation, leading to a self-sustainable negative capacitance scheme.

 
more » « less
Award ID(s):
1825324
NSF-PAR ID:
10395148
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Numerous recent works have established the potential of various types of metamaterials for simultaneous vibration control and energy harvesting. In this paper, we investigate a weakly nonlinear metamaterial with electromechanical (EM) local resonators coupled to a resistance-inductance shunt circuit, a system with no previous examination in the literature. An analytical solution is developed for the system, using the perturbation method of multiple scales, and validated through direct numerical integration. The resulting linear and nonlinear band structures are used for parametric analysis of the system, focusing on the effect of resonator and shunt circuit parameters on band gap formation and vibration attenuation. This band structure analysis informs further study of the system through wavepacket excitation as well as spectro-spatial analysis. The voltage response of the system is studied through spatial profiles and spectrograms to observe the effects of shunt inductance, nonlinearity, and their interactions. Results describe the impact of adding a shunted inductor, including significant changes to the band structure; multiple methods of tuning band gaps and pass bands of the system; and changes to wave propagation and voltage response. The results demonstrate the flexibility of the proposed metamaterial and its potential for both vibration control and energy harvesting, specifically compared to a previously studied system with resistance-only shunt.

     
    more » « less
  2. Ambient energy harvesting using piezoelectric transducers is becoming popular to provide power for small microelectronics devices. The deflection of tires during rotation is an example of the source of energy for electric power generation. This generated power can be used to feed tire selfpowering sensors for bicycles, cars, trucks, and airplanes. The aim of this study is to optimize the energy efficiency of a rainbow shape piezoelectric transducer mounted on the inner layer of a pneumatic tire for providing enough power for microelectronics devices required to monitor tires. For this aim a rainbow shape piezoelectric transducer is adjusted with the tire dimensions and excited based on the car speed and strain. The geometry and load resistance effects of the piezoelectric transducer is optimized using Multiphysics modeling and finite 
    more » « less
  3. Abstract

    Vibration‐based energy harvesting for enabling next‐generation self‐powered devices is a rapidly growing research area. In real‐world applications, the ambient vibrational energy is often available in non‐deterministic forms rather than the extensively studied deterministic scenarios, such as simple harmonic excitation. It is of interest to choose the best piezoelectric material for a given random excitation. Here, performance comparisons of various soft and hard piezoelectric ceramics and single crystals are presented for electrical power generation under band‐limited off‐resonance and wideband random vibration energy‐harvesting scenarios. For low‐frequency off‐resonance excitation, it is found that soft piezoelectric ceramics based upon lead zirconate titanate (e.g., PZT‐5H and PZT‐5A) outperform their hard counterparts (e.g., PZT‐4 and PZT‐8), and likewise soft single crystals based upon lead magnesium niobate and lead titanate as well as PZT (e.g., PMN‐PT and PMN‐PZT) outperform the relatively hard ones (e.g., manganese‐doped PMN‐PZT‐Mn). Overall, for such off‐resonance random vibrations, PMN‐PT is the most suitable choice among the materials studied. For wideband random excitation with a bandwidth covering the fundamental resonance of the harvester, hard piezoelectric ceramics offer larger power output compared to soft ceramics, and likewise hard single crystals produce larger power compared to their soft counterparts. Remarkably, a hard piezoelectric ceramic (e.g., PZT‐8) can outperform a soft single crystal (e.g., PMN‐PT) for wideband random vibration energy harvesting.

     
    more » « less
  4. Abstract

    Self‐sustainable energy generation represents a new frontier to significantly extend the lifetime and effectiveness of implantable biomedical devices. In this work, a piezoelectric energy harvester design is employed to utilize the bending of the lead of a cardiac pacemaker or defibrillator for generating electrical energy with minimal risk of interfering with cardiovascular functions. The proposed energy harvester combines flexible porous polyvinylidene fluoride–trifluoroethylene thin film with a buckled beam array design for potentially harvesting energy from cardiac motion. Systematic in vitro experimental evaluations are performed by considering complex parameters in practical implementations. Under various mechanical inputs and boundary conditions, the maximum electrical output of this energy harvester yields an open circuit voltage (peak to peak) of 4.5 V and a short circuit current (peak to peak) of 200 nA, and that energy is sufficient to self‐power a typical pacemaker for 1 d. A peak power output of 49 nW is delivered at an optimal resistor load of 50 MΩ. The scalability of the design is also discussed, and the reported results demonstrate the energy harvester's capability of providing significant electrical energy directly from the motions of pacemaker leads, suggesting a paradigm for biomedical energy harvesting in vivo.

     
    more » « less
  5. Abstract

    Biomedical self‐sustainable energy generation represents a new frontier of power solution for implantable biomedical devices (IMDs), such as cardiac pacemakers. However, almost all reported cardiac energy harvesting designs have not yet reached the stage of clinical translation. A major bottleneck has been the need of additional surgeries for the placements of these devices. Here, integrated piezoelectric‐based energy harvesting and sensing designs are reported, which can be seamlessly incorporated into existing IMDs for ease of clinical translation. In vitro experiments validate the energy harvesting process by simulating the bending and twisting motion during heart cycle. Clinical translation is demonstrated in four porcine hearts in vivo under various conditions. Energy harvesting strategy utilizes pacemaker leads as a means of reducing the reliance on batteries and demonstrates the charging ability for extending the lifetime of a pacemaker battery by 20%, which provides a promising self‐sustainable energy solution for IMDs. The additional self‐powered blood pressure sensing is discussed, and the reported results demonstrate the potential in alerting arrhythmias by monitoring the right ventricular pressure variations. This combined cardiac energy harvesting and blood pressure sensing strategy provides a multifunctional, transformative while practical power and diagnosis solution for cardiac pacemakers and next generation of IMDs.

     
    more » « less