skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of basin-scale in situ and meteoric <sup>10</sup>Be erosion and denudation rates in felsic lithologies across an elevation gradient at the George River, northeast Tasmania, Australia
Abstract. Long-term erosion rates in Tasmania, at the southern end of Australia's Great Dividing Range, are poorly known; yet, this knowledge is critical for making informed land-use decisions and improving the ecological health of coastal ecosystems. Here, we present quantitative, geologically relevant estimates of erosion rates for the George River basin, in northeast Tasmania, based on in situ-produced 10Be (10Bei) measured from stream sand at two trunk channel sites and seven tributaries (mean: 24.1±1.4 Mgkm-2yr-1; 1σ). These new10Bei-based erosion rates are strongly related to elevation, which appears to control mean annual precipitation and temperature,suggesting that elevation-dependent surface processes influence rates of erosion in northeast Tasmania. Erosion rates are not correlated with slopein contrast to erosion rates along the mainland portions of Australia's Great Dividing Range. We also extracted and measured meteoric 10Be(10Bem) from grain coatings of sand-sized stream sediment at each site, which we normalize to measured concentrations of reactive 9Beand use to estimate 10Bem-based denudation rates for the George River. 10Bem/9Bereac denudation ratesreplicate 10Bei erosion rates within a factor of 3 but are highly sensitive to the value of 9Be that is found in bedrock(9Beparent), which was unmeasured in this study. 10Bem/9Bereac denudation rates seem sensitive to recentmining, forestry, and agricultural land use, all of which resulted in widespread topsoil disturbance. Our findings suggest that10Bem/9Bereac denudation metrics will be most useful in drainage basins that are geologically homogeneous, where recentdisturbances to topsoil profiles are minimal, and where 9Beparent is well constrained.  more » « less
Award ID(s):
1735676
PAR ID:
10395172
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Geochronology
Volume:
4
Issue:
1
ISSN:
2628-3719
Page Range / eLocation ID:
153 to 176
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Meteoric 10Be (10Bemet) concentrations insoil profiles have great potential as a geochronometer and a tracer of Earthsurface processes, particularly in fine-grained soils lacking quartz thatwould preclude the use of in situ produced 10Be (10Bein situ). Oneprerequisite for using this technique for accurately calculating rates anddates is constraining the delivery, or flux, of 10Bemet to a site.However, few studies to date have quantified long-term (i.e., millennial)delivery rates, and none have determined a delivery rate for an erodingsoil. In this study, we compared existing concentrations of 10Bein situ with new measurements of 10Bemet in eroding soils sampledfrom the same depth profiles to calibrate a long-term 10Bemetdelivery rate. We did so on the Pinedale (∼ 21–25 kyr) and BullLake (∼ 140 kyr) glacial moraines at Fremont Lake, Wyoming(USA), where age, grain sizes, weathering indices, and soil properties areknown, as are erosion and denudation rates calculated from 10Bein situ. After ensuring sufficient beryllium retention in each profile,solving for the delivery rate of 10Bemet, and normalizing forpaleomagnetic and solar intensity variations over the Holocene, we calculate10Bemet fluxes of 1.46 (±0.20) × 106 atoms cm−2 yr−1 and 1.30 (±0.48) × 106 atoms cm−2 yr−1 tothe Pinedale and Bull Lake moraines, respectively, and compare these valuesto two widely used 10Bemet delivery rate estimation methods thatsubstantially differ for this site. Accurately estimating the 10Bemetflux using these methods requires a consideration of spatial scale andtemporally varying parameters (i.e., paleomagnetic field intensity, solarmodulation) to ensure the most realistic estimates of10Bemet-derived erosion rates in future studies. 
    more » « less
  2. Abstract. We use 25 new measurements of in situ produced cosmogenic 26Al and 10Bein river sand, paired with estimates of dissolved load flux in river water,to characterize the processes and pace of landscape change in central Cuba.Long-term erosion rates inferred from 10Be concentrations in quartzextracted from central Cuban river sand range from3.4–189 Mg km−2 yr−1 (mean 59, median 45). Dissolved loads (10–176 Mg km−2 yr−1; mean 92, median 97), calculated from stream soluteconcentrations and modeled runoff, exceed measured cosmogenic-10Be-derived erosion rates in 18 of 23 basins. This disparity mandatesthat in this environment landscape-scale mass loss is not fully representedby the cosmogenic nuclide measurements. The 26Al / 10Be ratios are lower than expected for steady-state exposure or erosion in 16 of 24 samples. Depressed 26Al / 10Be ratios occur in many of the basins that have the greatest disparity between dissolved loads (high) and erosion rates inferred from cosmogenic nuclide concentrations (low). Depressed 26Al / 10Be ratios are consistentwith the presence of a deep, mixed, regolith layer providing extendedstorage times on slopes and/or burial and extended storage during fluvialtransport. River water chemical analyses indicate that many basins with lower 26Al / 10Be ratios and high 10Be concentrations are underlain at least in part by evaporitic rocks that rapidly dissolve. Our data show that when assessing mass loss in humid tropical landscapes,accounting for the contribution of rock dissolution at depth is particularly important. In such warm, wet climates, mineral dissolution can occur many meters below the surface, beyond the penetration depth of most cosmic rays and thus the production of most cosmogenic nuclides. Our data suggest the importance of estimating solute fluxes and measuring paired cosmogenic nuclides to better understand the processes and rates of mass transfer at a basin scale. 
    more » « less
  3. Abstract. Outlet glaciers that flow through the Transantarctic Mountains (TAM) experienced changes in ice thickness greater than other coastal regions of Antarctica during glacial maxima. As a result, ice-free areas that are currently exposed may have been covered by ice at various points during the Cenozoic, complicating our understanding of ecological succession in TAM soils. Our knowledge of glacial extent on small spatial scales is limited for the TAM, and studies of soil exposure duration and disturbance, in particular, are rare. We collected surface soil samples and, in some places, depth profiles every 5 cm to refusal (up to 30 cm) from 11ice-free areas along Shackleton Glacier, a major outlet glacier of the EastAntarctic Ice Sheet. We explored the relationship between meteoric 10Be and NO3- in these soils as a tool for understanding landscape disturbance and wetting history and as exposure proxies. Concentrations of meteoric 10Be spanned more than an order of magnitude across the region (2.9×108 to 73×108 atoms g−1) and are among the highest measured in polar regions. The concentrations of NO3- were similarly variable and ranged from ∼1 µg g−1 to 15 mg g−1. In examining differences and similarities in the concentrations of 10Be and NO3- with depth, we suggest that much of the southern portion of the Shackleton Glacier region has likely developed under a hyper-arid climate regime with minimal disturbance. Finally, we inferred exposure time using 10Be concentrations. This analysis indicates that the soils we analyzed likelyrange from recent exposure (following the Last Glacial Maximum) to possibly>6 Myr. We suggest that further testing and interrogation of meteoric 10Be and NO3- concentrations and relationships in soils can provide important information regarding landscape development, soil evolution processes, and inferred exposure durations of surfaces in the TAM. 
    more » « less
  4. Abstract. Since the 1990s, analysis of cosmogenic nuclides, primarily 10Be, in quartz-bearing river sand, has allowed for quantitative determination of erosion rates at a basin scale. Paired measurements of in situ cosmogenic 26Al and 10Be in sediment are less common but offers insight into the history of riverine sediment moving down slopes and through drainage basins. Prolonged sediment burial (>105 years), a violation of assumptions underlying erosion rate calculations, is indicated by higher 26Al-based than 10Be-based erosion rates due to preferential loss of shorter-lived 26Al by decay when quartz is shielded from cosmic rays. Here, we use a global compilation of 26Al and 10Be data generated from quartz-bearing fluvial sediment samples (n = 624, including 121 new measurements) and calculate the discordance between erosion rates derived from each nuclide. We test for correlations between such discordance and topographic metrics for drainage basins, allowing us to infer the likelihood of sediment burial during transport in different geomorphic settings. We find that nearly half of samples (n = 276) exhibit discordance (> 1σ uncertainty) between erosion rates derived from 10Be and 26Al, indicating sediment histories that must include extended burial during residence on hillslopes and/or in the fluvial system after or during initial near-surface exposure. Physical basin parameters such as basin area, slope, and tectonic activity exhibit significant correlation with erosion rate discordance whereas climatic parameters have little correlation. Our analysis suggests that 26Al/10Be erosion rate discordance occurs more regularly in basins larger than 1,000 km2, particularly when such basins have low average slopes and are in tectonically quiescent terrains. Sediment sourced from smaller, steeper basins in tectonically active regions is more likely to have similar 10Be and 26Al erosion rates indicative of limited storage and limited burial during residence in the hillslope and fluvial sediment system. The data and analysis we present demonstrate that paired 26Al and 10Be analyses in detrital fluvial samples can provide a window into watershed processes, elucidating landscape behavior at different spatial scales and allowing a deeper understanding of both sediment routing systems and whether erosion rate assumptions are violated. Large lowland basins are more likely to transport detrital sediment that has experienced prolonged sediment storage and burial either on hillslopes and/or in fluvial networks; thus, erosion rates from such basins are lower limits due to nuclide decay during storage. Conversely, samples from smaller upland basins are more likely to provide reliable erosion rates. 
    more » « less
  5. Abstract. To understand the erosivity of the eastern portion of the Laurentide Ice Sheet and the isotopic characteristics of the sediment it transported, we sampled buried sand from deglacial features (eskers and deltas) across eastern Canada (n = 10), a landscape repeatedly covered by the Quebec-Labrador Ice Dome. We measured concentrations of 10Be and 26Al in quartz isolated from the sediment and, after correcting for sub-surface cosmic-ray exposure after Holocene deglaciation, used these results to determine nuclide concentrations at the time the ice sheet deposited the sediment. To determine what percentage of sediment moving through streams and rivers currently draining the field area was derived from incision of thick glacial deposits as opposed to surface erosion, we used 10Be and 26Al as tracers by collecting and analyzing modern river sand sourced from Holocene-exposed landscapes (n = 11). We find that all ten deglacial sediment samples contain measurable concentrations of 10Be and 26Al equivalent on average to several thousand years of surface exposure – after correction, based on sampling depth, for Holocene nuclide production after deposition. Error-weighted averages (1 standard deviation errors) of measured 26Al/10Be ratios for both corrected deglacial (6.1 ± 1.2) and modern sediment samples (6.6 ± 0.5) are slightly lower than the production ratio at high latitudes (7.3 ± 0.3) implying burial and preferential decay of 26Al, the shorter-lived nuclide. However, five deglacial samples collected closer to the center of the former Quebec-Labrador Ice Dome have much lower corrected 26Al/10Be ratios (5.2 ± 0.8) than five samples collected closer to the former ice margins (7.0 ± 0.7). Modern river sand contains on average about 1.75 times the concentration of both nuclides compared to deglacial sediment corrected for Holocene exposure. The ubiquitous presence of 10Be and 26Al in eastern Quebec deglacial sediment is consistent with many older-than-expected exposure ages, reported here and by others, for bedrock outcrops and boulders once covered by the Quebec-Labrador Ice Dome. Together, these data suggest that glacial erosion and sediment transport in eastern Canada were insufficient to remove material containing cosmogenic nuclides produced during prior interglacial periods both from at least some bedrock outcrops and from all glacially transported sediment we sampled. Near the center of the Quebec-Labrador Ice Dome, ratios of 26Al/10Be are below those characteristic of surface production at high latitude. This suggests burial of the glacially transported sediment for at least many hundreds of thousands of years and the possibility that ice at the center of the Quebec-Labrador Ice Dome survived many interglacials when more distal ice melted away. 
    more » « less