skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Calibrating a long-term meteoric <sup>10</sup>Be delivery rate into eroding western US glacial deposits by comparing meteoric and in situ produced <sup>10</sup>Be depth profiles
Abstract. Meteoric 10Be (10Bemet) concentrations insoil profiles have great potential as a geochronometer and a tracer of Earthsurface processes, particularly in fine-grained soils lacking quartz thatwould preclude the use of in situ produced 10Be (10Bein situ). Oneprerequisite for using this technique for accurately calculating rates anddates is constraining the delivery, or flux, of 10Bemet to a site.However, few studies to date have quantified long-term (i.e., millennial)delivery rates, and none have determined a delivery rate for an erodingsoil. In this study, we compared existing concentrations of 10Bein situ with new measurements of 10Bemet in eroding soils sampledfrom the same depth profiles to calibrate a long-term 10Bemetdelivery rate. We did so on the Pinedale (∼ 21–25 kyr) and BullLake (∼ 140 kyr) glacial moraines at Fremont Lake, Wyoming(USA), where age, grain sizes, weathering indices, and soil properties areknown, as are erosion and denudation rates calculated from 10Bein situ. After ensuring sufficient beryllium retention in each profile,solving for the delivery rate of 10Bemet, and normalizing forpaleomagnetic and solar intensity variations over the Holocene, we calculate10Bemet fluxes of 1.46 (±0.20) × 106 atoms cm−2 yr−1 and 1.30 (±0.48) × 106 atoms cm−2 yr−1 tothe Pinedale and Bull Lake moraines, respectively, and compare these valuesto two widely used 10Bemet delivery rate estimation methods thatsubstantially differ for this site. Accurately estimating the 10Bemetflux using these methods requires a consideration of spatial scale andtemporally varying parameters (i.e., paleomagnetic field intensity, solarmodulation) to ensure the most realistic estimates of10Bemet-derived erosion rates in future studies.  more » « less
Award ID(s):
2103501
PAR ID:
10237433
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Geochronology
Volume:
2
Issue:
2
ISSN:
2628-3719
Page Range / eLocation ID:
411 to 423
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Outlet glaciers that flow through the Transantarctic Mountains (TAM) experienced changes in ice thickness greater than other coastal regions of Antarctica during glacial maxima. As a result, ice-free areas that are currently exposed may have been covered by ice at various points during the Cenozoic, complicating our understanding of ecological succession in TAM soils. Our knowledge of glacial extent on small spatial scales is limited for the TAM, and studies of soil exposure duration and disturbance, in particular, are rare. We collected surface soil samples and, in some places, depth profiles every 5 cm to refusal (up to 30 cm) from 11ice-free areas along Shackleton Glacier, a major outlet glacier of the EastAntarctic Ice Sheet. We explored the relationship between meteoric 10Be and NO3- in these soils as a tool for understanding landscape disturbance and wetting history and as exposure proxies. Concentrations of meteoric 10Be spanned more than an order of magnitude across the region (2.9×108 to 73×108 atoms g−1) and are among the highest measured in polar regions. The concentrations of NO3- were similarly variable and ranged from ∼1 µg g−1 to 15 mg g−1. In examining differences and similarities in the concentrations of 10Be and NO3- with depth, we suggest that much of the southern portion of the Shackleton Glacier region has likely developed under a hyper-arid climate regime with minimal disturbance. Finally, we inferred exposure time using 10Be concentrations. This analysis indicates that the soils we analyzed likelyrange from recent exposure (following the Last Glacial Maximum) to possibly>6 Myr. We suggest that further testing and interrogation of meteoric 10Be and NO3- concentrations and relationships in soils can provide important information regarding landscape development, soil evolution processes, and inferred exposure durations of surfaces in the TAM. 
    more » « less
  2. Abstract. Long-term erosion rates in Tasmania, at the southern end of Australia's Great Dividing Range, are poorly known; yet, this knowledge is critical for making informed land-use decisions and improving the ecological health of coastal ecosystems. Here, we present quantitative, geologically relevant estimates of erosion rates for the George River basin, in northeast Tasmania, based on in situ-produced 10Be (10Bei) measured from stream sand at two trunk channel sites and seven tributaries (mean: 24.1±1.4 Mgkm-2yr-1; 1σ). These new10Bei-based erosion rates are strongly related to elevation, which appears to control mean annual precipitation and temperature,suggesting that elevation-dependent surface processes influence rates of erosion in northeast Tasmania. Erosion rates are not correlated with slopein contrast to erosion rates along the mainland portions of Australia's Great Dividing Range. We also extracted and measured meteoric 10Be(10Bem) from grain coatings of sand-sized stream sediment at each site, which we normalize to measured concentrations of reactive 9Beand use to estimate 10Bem-based denudation rates for the George River. 10Bem/9Bereac denudation ratesreplicate 10Bei erosion rates within a factor of 3 but are highly sensitive to the value of 9Be that is found in bedrock(9Beparent), which was unmeasured in this study. 10Bem/9Bereac denudation rates seem sensitive to recentmining, forestry, and agricultural land use, all of which resulted in widespread topsoil disturbance. Our findings suggest that10Bem/9Bereac denudation metrics will be most useful in drainage basins that are geologically homogeneous, where recentdisturbances to topsoil profiles are minimal, and where 9Beparent is well constrained. 
    more » « less
  3. Abstract. Measurements of multiple cosmogenic nuclides in a single sample are valuable for various applications of cosmogenic nuclide exposure dating and allow for correcting exposure ages for surface weathering and erosion and establishing exposure–burial history. Here we provide advances in the measurement of cosmogenic 10Be in pyroxene and constraints on the production rate that provide new opportunities for measurements of multi-nuclide systems, such as 10Be/3He, in pyroxene-bearing samples. We extracted and measured cosmogenic 10Be in pyroxene from two sets of Ferrar Dolerite samples collected from the Transantarctic Mountains in Antarctica. One set of samples has 10Be concentrations close to saturation, which allows for the production rate calibration of 10Be in pyroxene by assuming production–decay equilibrium. The other set of samples, which has a more recent exposure history, is used to determine if a rapid fusion method can be successfully applied to samples with Holocene to Last Glacial Maximum exposure ages. From measured 10Be concentrations in the near-saturation sample set we find the production rate of 10Be in pyroxene to be 3.74 ± 0.10 atoms g−1 yr−1, which is consistent with 10Be/3He paired nuclide ratios from samples assumed to have simple exposure. Given the high 10Be concentration measured in this sample set, a sample mass of ∼ 0.5 g of pyroxene is sufficient for the extraction of cosmogenic 10Be from pyroxene using a rapid fusion method. However, for the set of samples that have low 10Be concentrations, measured concentrations were higher than expected. We attribute spuriously high 10Be concentrations to failure in removing all meteoric 10Be and/or a highly variable and poorly quantified procedural blank background correction. 
    more » « less
  4. Abstract. Since the 1990s, analysis of cosmogenic nuclides, primarily 10Be, in quartz-bearing river sand, has allowed for quantitative determination of erosion rates at a basin scale. Paired measurements of in situ cosmogenic 26Al and 10Be in sediment are less common but offers insight into the history of riverine sediment moving down slopes and through drainage basins. Prolonged sediment burial (>105 years), a violation of assumptions underlying erosion rate calculations, is indicated by higher 26Al-based than 10Be-based erosion rates due to preferential loss of shorter-lived 26Al by decay when quartz is shielded from cosmic rays. Here, we use a global compilation of 26Al and 10Be data generated from quartz-bearing fluvial sediment samples (n = 624, including 121 new measurements) and calculate the discordance between erosion rates derived from each nuclide. We test for correlations between such discordance and topographic metrics for drainage basins, allowing us to infer the likelihood of sediment burial during transport in different geomorphic settings. We find that nearly half of samples (n = 276) exhibit discordance (> 1σ uncertainty) between erosion rates derived from 10Be and 26Al, indicating sediment histories that must include extended burial during residence on hillslopes and/or in the fluvial system after or during initial near-surface exposure. Physical basin parameters such as basin area, slope, and tectonic activity exhibit significant correlation with erosion rate discordance whereas climatic parameters have little correlation. Our analysis suggests that 26Al/10Be erosion rate discordance occurs more regularly in basins larger than 1,000 km2, particularly when such basins have low average slopes and are in tectonically quiescent terrains. Sediment sourced from smaller, steeper basins in tectonically active regions is more likely to have similar 10Be and 26Al erosion rates indicative of limited storage and limited burial during residence in the hillslope and fluvial sediment system. The data and analysis we present demonstrate that paired 26Al and 10Be analyses in detrital fluvial samples can provide a window into watershed processes, elucidating landscape behavior at different spatial scales and allowing a deeper understanding of both sediment routing systems and whether erosion rate assumptions are violated. Large lowland basins are more likely to transport detrital sediment that has experienced prolonged sediment storage and burial either on hillslopes and/or in fluvial networks; thus, erosion rates from such basins are lower limits due to nuclide decay during storage. Conversely, samples from smaller upland basins are more likely to provide reliable erosion rates. 
    more » « less
  5. Abstract. The timing of the Laurentide Ice Sheet's final retreat from North America's Laurentian Great Lakes is relevant to understanding regional meltwater routing, changing proglacial lake levels, and lake-bottom stratigraphy following the Last Glacial Maximum. Recessional moraines on Isle Royale, the largest island in Lake Superior, have been mapped but not directly dated. Here, we use the mean of 10 new 10Be exposure ages of glacial erratics from two recessional moraines (10.1 ± 1.1 ka, one standard deviation; excluding one anomalously young sample) to constrain the timing of Isle Royale's final deglaciation. This 10Be age is consistent with existing minimum-limiting 14C ages of basal organic sediment from two inland lakes on Isle Royale, a sediment core in Lake Superior southwest of the island, and an estimated deglaciation age of the younger of two subaqueous moraines between Isle Royale and Michigan's Keweenaw Peninsula. Relationships between Isle Royale's landform ages and Lake Superior bottom stratigraphy allow us to delineate the retreat of the Laurentide ice margin across and through Lake Superior in the early Holocene. We suggest that Laurentide ice was in contact with the southern shorelines of Lake Superior later than previously thought. 
    more » « less