skip to main content


Title: Leveraging the Properties of mmWave Signals for 3D Finger Motion Tracking for Interactive IoT Applications
mmWave signals form a critical component of 5G and next-generation wireless networks, which are also being increasingly considered for sensing the environment around us to enable ubiquitous IoT applications. In this context, this paper leverages the properties of mmWave signals for tracking 3D finger motion for interactive IoT applications. While conventional vision-based solutions break down under poor lighting, occlusions, and also suffer from privacy concerns, mmWave signals work under typical occlusions and non-line-of-sight conditions, while being privacy-preserving. In contrast to prior works on mmWave sensing that focus on predefined gesture classification, this work performs continuous 3D finger motion tracking. Towards this end, we first observe via simulations and experiments that the small size of fingers coupled with specular reflections do not yield stable mmWave reflections. However, we make an interesting observation that focusing on the forearm instead of the fingers can provide stable reflections for 3D finger motion tracking. Muscles that activate the fingers extend through the forearm, whose motion manifests as vibrations on the forearm. By analyzing the variation in phases of reflected mmWave signals from the forearm, this paper designs mm4Arm, a system that tracks 3D finger motion. Nontrivial challenges arise due to the high dimensional search space, complex vibration patterns, diversity across users, hardware noise, etc. mm4Arm exploits anatomical constraints in finger motions and fuses them with machine learning architectures based on encoder-decoder and ResNets in enabling accurate tracking. A systematic performance evaluation with 10 users demonstrates a median error of 5.73° (location error of 4.07 mm) with robustness to multipath and natural variation in hand position/orientation. The accuracy is also consistent under non-line-of-sight conditions and clothing that might occlude the forearm. mm4Arm runs on smartphones with a latency of 19 ms and low energy overhead.  more » « less
Award ID(s):
2046972 1956276
PAR ID:
10395298
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Measurement and Analysis of Computing Systems
Volume:
6
Issue:
3
ISSN:
2476-1249
Page Range / eLocation ID:
1 to 28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents ssLOTR (self-supervised learning on the rings), a system that shows the feasibility of designing self-supervised learning based techniques for 3D finger motion tracking using a custom-designed wearable inertial measurement unit (IMU) sensor with a minimal overhead of labeled training data. Ubiquitous finger motion tracking enables a number of applications in augmented and virtual reality, sign language recognition, rehabilitation healthcare, sports analytics, etc. However, unlike vision, there are no large-scale training datasets for developing robust machine learning (ML) models on wearable devices. ssLOTR designs ML models based on data augmentation and self-supervised learning to first extract efficient representations from raw IMU data without the need for any training labels. The extracted representations are further trained with small-scale labeled training data. In comparison to fully supervised learning, we show that only 15% of labeled training data is sufficient with self-supervised learning to achieve similar accuracy. Our sensor device is designed using a two-layer printed circuit board (PCB) to minimize the footprint and uses a combination of Polylactic acid (PLA) and Thermoplastic polyurethane (TPU) as housing materials for sturdiness and flexibility. It incorporates a system-on-chip (SoC) microcontroller with integrated WiFi/Bluetooth Low Energy (BLE) modules for real-time wireless communication, portability, and ubiquity. In contrast to gloves, our device is worn like rings on fingers, and therefore, does not impede dexterous finger motion. Extensive evaluation with 12 users depicts a 3D joint angle tracking accuracy of 9.07° (joint position accuracy of 6.55mm) with robustness to natural variation in sensor positions, wrist motion, etc, with low overhead in latency and power consumption on embedded platforms. 
    more » « less
  2. We propose MiShape, a millimeter-wave (mmWave) wireless signal based imaging system that generates high-resolution human silhouettes and predicts 3D locations of body joints. The system can capture human motions in real-time under low light and low-visibility conditions. Unlike existing vision-based motion capture systems, MiShape is privacy non-invasive and can generalize to a wide range of motion tracking applications at-home. To overcome the challenges with low-resolution, specularity, and aliasing in images from Commercial-Off-The-Shelf (COTS) mmWave systems, MiShape designs deep learning models based on conditional Generative Adversarial Networks and incorporates the rules of human biomechanics. We have customized MiShape for gait monitoring, but the model is well adaptive to any tracking applications with limited fine-tuning samples. We experimentally evaluate MiShape with real data collected from a COTS mmWave system for 10 volunteers, with diverse ages, gender, height, and somatotype, performing different poses. Our experimental results demonstrate that MiShape delivers high-resolution silhouettes and accurate body poses on par with an existing vision-based system, and unlocks the potential of mmWave systems, such as 5G home wireless routers, for privacy-noninvasive healthcare applications. 
    more » « less
  3. In this work, we propose a novel approach for high accuracy user localization by merging tools from both millimeter wave (mmWave) imaging and communications. The key idea of the proposed solution is to leverage mmWave imaging to construct a high-resolution 3D image of the line-of-sight (LOS) and non-line-of-sight (NLOS) objects in the environment at one antenna array. Then, uplink pilot signaling with the user is used to estimate the angle-of-arrival and time-of- arrival of the dominant channel paths. By projecting the AoA and ToA information on the 3D mmWave images of the environment, the proposed solution can locate the user with a sub-centimeter accuracy. This approach has several gains. First, it allows accurate simultaneous localization and mapping (SLAM) from a single standpoint, i.e., using only one antenna array. Second, it does not require any prior knowledge of the surrounding environment. Third, it can locate NLOS users, even if their signals experience more than one reflection and without requiring an antenna array at the user. The approach is evaluated using a hardware setup and its ability to provide sub-centimeter localization accuracy is shown 
    more » « less
  4. This paper presents EARFace , a system that shows the feasibility of tracking facial landmarks for 3D facial reconstruction using in-ear acoustic sensors embedded within smart earphones. This enables a number of applications in the areas of facial expression tracking, user-interfaces, AR/VR applications, affective computing, accessibility, etc. While conventional vision-based solutions break down under poor lighting, occlusions, and also suffer from privacy concerns, earphone platforms are robust to ambient conditions, while being privacy-preserving. In contrast to prior work on earable platforms that perform outer-ear sensing for facial motion tracking, EARFace shows the feasibility of completely in-ear sensing with a natural earphone form-factor, thus enhancing the comfort levels of wearing. The core intuition exploited by EARFace is that the shape of the ear canal changes due to the movement of facial muscles during facial motion. EARFace tracks the changes in shape of the ear canal by measuring ultrasonic channel frequency response (CFR) of the inner ear, ultimately resulting in tracking of the facial motion. A transformer based machine learning (ML) model is designed to exploit spectral and temporal relationships in the ultrasonic CFR data to predict the facial landmarks of the user with an accuracy of 1.83 mm. Using these predicted landmarks, a 3D graphical model of the face that replicates the precise facial motion of the user is then reconstructed. Domain adaptation is further performed by adapting the weights of layers using a group-wise and differential learning rate. This decreases the training overhead in EARFace . The transformer based ML model runs on smartphone devices with a processing latency of 13 ms and an overall low power consumption profile. Finally, usability studies indicate higher levels of comforts of wearing EARFace ’s earphone platform in comparison with alternative form-factors. 
    more » « less
  5. In this work, we proposeMiSleep, a deep learning augmented millimeter-wave (mmWave) wireless system to monitor human sleep posture by predicting the 3D location of the body joints of a person during sleep. Unlike existing vision- or wearable-based sleep monitoring systems,MiSleepis not privacy-invasive and does not require users to wear anything on their body.MiSleepleverages knowledge of human anatomical features and deep learning models to solve challenges in existing mmWave devices with low-resolution and aliased imaging, and specularity in signals.MiSleepbuilds the model by learning the relationship between mmWave reflected signals and body postures from thousands of existing samples. Since a practical sleep also involves sudden toss-turns, which could introduce errors in posture prediction,MiSleepdesigns a state machine based on the reflected signals to classify the sleeping states into rest or toss-turn, and predict the posture only during the rest states. We evaluateMiSleepwith real data collected from Commercial-Off-The-Shelf mmWave devices for 8 volunteers of diverse ages, genders, and heights performing different sleep postures. We observe thatMiSleepidentifies the toss-turn events start time and duration within 1.25 s and 1.7 s of the ground truth, respectively, and predicts the 3D location of body joints with a median error of 1.3 cm only and can perform even under the blankets, with accuracy on par with the existing vision-based system, unlocking the potential of mmWave systems for privacy-noninvasive at-home healthcare applications.

     
    more » « less