The cultivation of marine invertebrate cells in vitro has garnered significant attention due to the availability of diverse cell types and cellular potentialities in comparison to vertebrates and particularly in response to the demand for a multitude of applications. While cells in the colonial urochordate Botryllus schlosseri have a very high potential for omnipotent differentiation, no proliferating cell line has been established in Botryllus, with results indicating that cell divisions cease 24–72 h post initiation. This research assessed how various Botryllus blood cell types respond to in vitro conditions by utilizing five different refinements of cell culture media (TGM1–TGM5). During the initial week of culture, there was a noticeable medium-dependent increase in the proliferation and viability of distinct blood cell types. Within less than one month from initiation, we developed medium-specific primary cultures, a discovery that supports larger efforts to develop cell type-specific cultures. Specific cell types were easily distinguished and classified based on their natural fluorescence properties using confocal microscopy. These results are in agreement with recent advances in marine invertebrate cell cultures, demonstrating the significance of optimized nutrient media for cell culture development and for cell selection.
more »
« less
Laboratory Culture and Mutagenesis of Amphioxus (Branchiostoma floridae).
Cephalochordates (amphioxus) are invertebrate chordates closely related to vertebrates. As they are evolving very slowly, they are proving to be very appropriate for developmental genetics studies aimed at understanding how vertebrates evolved from their invertebrate ancestors. To date, techniques for gene knockdown and overexpression have been developed, but methods for continuous breeding cultures and generating germline mutants have been developed only recently. Here we describe methods for continuous laboratory breeding cultures of the cephalochordate Branchiostoma floridae and the TALEN and Tol2 methods for mutagenesis. Included are strategies for analyzing the mutants and raising successive generations to obtain homozygotes. These methods should be applicable to any warm water species of cephalochordates with a relatively short generation time of 3-4 months and a life span of 3 years or more.
more »
« less
- Award ID(s):
- 1952567
- PAR ID:
- 10395416
- Date Published:
- Journal Name:
- Methods in molecular biology
- Volume:
- 2219
- ISSN:
- 1940-6029
- Page Range / eLocation ID:
- 1-29
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Crop improvement relies heavily on genetic variation that arises spontaneously through mutation. Modern breeding methods are very adept at combining this genetic variation in ways that achieve remarkable improvements in plant performance. Novel traits have also been created through mutation breeding and transgenesis. The advent of gene editing, however, marks a turning point: With gene editing, synthetic variation will increasingly supplement and, in some cases, supplant the genetic variation that occurs naturally. We are still in the very early stages of realizing the opportunity provided by plant gene editing. At present, typically only one or a few genes are targeted for mutation at a time, and most mutations result in loss of gene function. New technological developments, however, promise to make it possible to perform gene editing at scale. RNA virus vectors, for example, can deliver gene-editing reagents to the germ line through infection and create hundreds to thousands of diverse mutations in the progeny of infected plants. With developmental regulators, edited somatic cells can be induced to form meristems that yield seed-producing shoots, thereby increasing throughput and shrinking timescales for creating edited plants. As these approaches are refined and others developed, they will allow for accelerated breeding, the domestication of orphan crops and the reengineering of metabolism in a more directed manner than has ever previously been possible.more » « less
-
Guo, Daqing (Ed.)Unlike spiking neurons which compress continuous inputs into digital signals for transmitting information via action potentials, non-spiking neurons modulate analog signals through graded potential responses. Such neurons have been found in a large variety of nervous tissues in both vertebrate and invertebrate species, and have been proven to play a central role in neuronal information processing. If general and vast efforts have been made for many years to model spiking neurons using conductance-based models (CBMs), very few methods have been developed for non-spiking neurons. When a CBM is built to characterize the neuron behavior, it should be endowed with generalization capabilities ( i.e . the ability to predict acceptable neuronal responses to different novel stimuli not used during the model’s building). Yet, since CBMs contain a large number of parameters, they may typically suffer from a lack of such a capability. In this paper, we propose a new systematic approach based on multi-objective optimization which builds general non-spiking models with generalization capabilities. The proposed approach only requires macroscopic experimental data from which all the model parameters are simultaneously determined without compromise. Such an approach is applied on three non-spiking neurons of the nematode Caenorhabditis elegans ( C. elegans ), a well-known model organism in neuroscience that predominantly transmits information through non-spiking signals. These three neurons, arbitrarily labeled by convention as RIM, AIY and AFD, represent, to date, the three possible forms of non-spiking neuronal responses of C. elegans .more » « less
-
Plant breeding relies on crossing-over to create novel combinations of alleles needed to confer increased productivity and other desired traits in new varieties. However, crossover (CO) events are rare, as usually only one or two of them occur per chromosome in each generation. In addition, COs are not distributed evenly along chromosomes. In plants with large genomes, which includes most crops, COs are predominantly formed close to chromosome ends, and there are few COs in the large chromosome swaths around centromeres. This situation has created interest in engineering CO landscape to improve breeding efficiency. Methods have been developed to boost COs globally by altering expression of anti-recombination genes and increase CO rates in certain chromosome parts by changing DNA methylation patterns. In addition, progress is being made to devise methods to target COs to specific chromosome sites. We review these approaches and examine using simulations whether they indeed have the capacity to improve efficiency of breeding programs. We found that the current methods to alter CO landscape can produce enough benefits for breeding programs to be attractive. They can increase genetic gain in recurrent selection and significantly decrease linkage drag around donor loci in schemes to introgress a trait from unimproved germplasm to an elite line. Methods to target COs to specific genome sites were also found to provide advantage when introgressing a chromosome segment harboring a desirable quantitative trait loci. We recommend avenues for future research to facilitate implementation of these methods in breeding programs.more » « less
-
null (Ed.)Abstract Pear is a major fruit tree crop distributed worldwide, yet its breeding is a very time-consuming process. To facilitate molecular breeding and gene identification, here we have performed genome-wide association studies (GWAS) on eleven fruit traits. We identify 37 loci associated with eight fruit quality traits and five loci associated with three fruit phenological traits. Scans for selective sweeps indicate that traits including fruit stone cell content, organic acid and sugar contents might have been under continuous selection during breeding improvement. One candidate gene, PbrSTONE , identified in GWAS, has been functionally verified to be involved in the regulation of stone cell formation, one of the most important fruit quality traits in pear. Our study provides insights into the complex fruit related biology and identifies genes controlling important traits in pear through GWAS, which extends the genetic resources and basis for facilitating molecular breeding in perennial trees.more » « less
An official website of the United States government

