skip to main content


Title: Exploring impact of recombination landscapes on breeding outcomes
Plant breeding relies on crossing-over to create novel combinations of alleles needed to confer increased productivity and other desired traits in new varieties. However, crossover (CO) events are rare, as usually only one or two of them occur per chromosome in each generation. In addition, COs are not distributed evenly along chromosomes. In plants with large genomes, which includes most crops, COs are predominantly formed close to chromosome ends, and there are few COs in the large chromosome swaths around centromeres. This situation has created interest in engineering CO landscape to improve breeding efficiency. Methods have been developed to boost COs globally by altering expression of anti-recombination genes and increase CO rates in certain chromosome parts by changing DNA methylation patterns. In addition, progress is being made to devise methods to target COs to specific chromosome sites. We review these approaches and examine using simulations whether they indeed have the capacity to improve efficiency of breeding programs. We found that the current methods to alter CO landscape can produce enough benefits for breeding programs to be attractive. They can increase genetic gain in recurrent selection and significantly decrease linkage drag around donor loci in schemes to introgress a trait from unimproved germplasm to an elite line. Methods to target COs to specific genome sites were also found to provide advantage when introgressing a chromosome segment harboring a desirable quantitative trait loci. We recommend avenues for future research to facilitate implementation of these methods in breeding programs.  more » « less
Award ID(s):
1822162
NSF-PAR ID:
10426748
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
14
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Breeding of agricultural crops adapted to climate change and resistant to diseases and pests is hindered by a limited gene pool because of domestication and thousands of years of human selection. One way to increase genetic variation is chromosome-mediated gene transfer from wild relatives by cross hybridization. In the case of wheat ( Triticum aestivum ), the species of genus Aegilops are a particularly attractive source of new genes and alleles. However, during the evolution of the Aegilops and Triticum genera, diversification of the D-genome lineage resulted in the formation of diploid C, M, and U genomes of Aegilops . The extent of structural genome alterations, which accompanied their evolution and speciation, and the shortage of molecular tools to detect Aegilops chromatin hamper gene transfer into wheat. To investigate the chromosome structure and help develop molecular markers with a known physical position that could improve the efficiency of the selection of desired introgressions, we developed single-gene fluorescence in situ hybridization (FISH) maps for M- and U-genome progenitors, Aegilops comosa and Aegilops umbellulata , respectively. Forty-three ortholog genes were located on 47 loci in Ae. comosa and on 52 loci in Ae. umbellulata using wheat cDNA probes. The results obtained showed that M-genome chromosomes preserved collinearity with those of wheat, excluding 2 and 6M containing an intrachromosomal rearrangement and paracentric inversion of 6ML, respectively. While Ae. umbellulata chromosomes 1, 3, and 5U maintained collinearity with wheat, structural reorganizations in 2, 4, 6, and 7U suggested a similarity with the C genome of Aegilops markgrafii . To develop molecular markers with exact physical positions on chromosomes of Aegilops , the single-gene FISH data were validated in silico using DNA sequence assemblies from flow-sorted M- and U-genome chromosomes. The sequence similarity search of cDNA sequences confirmed 44 out of the 47 single-gene loci in Ae. comosa and 40 of the 52 map positions in Ae. umbellulata . Polymorphic regions, thus, identified enabled the development of molecular markers, which were PCR validated using wheat- Aegilops disomic chromosome addition lines. The single-gene FISH-based approach allowed the development of PCR markers specific for cytogenetically mapped positions on Aegilops chromosomes, substituting as yet unavailable segregating map. The new knowledge and resources will support the efforts for the introgression of Aegilops genes into wheat and their cloning. 
    more » « less
  2. Abstract Transcriptome-wide association studies (TWASs) integrate expression quantitative trait loci (eQTLs) studies with genome-wide association studies (GWASs) to prioritize candidate target genes for complex traits. Several statistical methods have been recently proposed to improve the performance of TWASs in gene prioritization by integrating the expression regulatory information imputed from multiple tissues, and made significant achievements in improving the ability to detect gene-trait associations. Unfortunately, most existing multi-tissue methods focus on prioritization of candidate genes, and cannot directly infer the specific functional effects of candidate genes across different tissues. Here, we propose a tissue-specific collaborative mixed model (TisCoMM) for TWASs, leveraging the co-regulation of genetic variations across different tissues explicitly via a unified probabilistic model. TisCoMM not only performs hypothesis testing to prioritize gene-trait associations, but also detects the tissue-specific role of candidate target genes in complex traits. To make full use of widely available GWASs summary statistics, we extend TisCoMM to use summary-level data, namely, TisCoMM-S2. Using extensive simulation studies, we show that type I error is controlled at the nominal level, the statistical power of identifying associated genes is greatly improved, and the false-positive rate (FPR) for non-causal tissues is well controlled at decent levels. We further illustrate the benefits of our methods in applications to summary-level GWASs data of 33 complex traits. Notably, apart from better identifying potential trait-associated genes, we can elucidate the tissue-specific role of candidate target genes. The follow-up pathway analysis from tissue-specific genes for asthma shows that the immune system plays an essential function for asthma development in both thyroid and lung tissues. 
    more » « less
  3. Improving drought resistance in crops is imperative under the prevailing erratic rainfall patterns. Drought affects the growth and yield of most modern rice varieties. Recent breeding efforts aim to incorporate drought resistance traits in rice varieties that can be suitable under alternative irrigation schemes, such as in a (semi)aerobic system, as row (furrow-irrigated) rice. The identification of quantitative trait loci (QTLs) controlling grain yield, the most important trait with high selection efficiency, can lead to the identification of markers to facilitate marker-assisted breeding of drought-resistant rice. Here, we report grain yield QTLs under greenhouse drought using an F2:3 population derived from Cocodrie (drought sensitive) × Nagina 22 (N22) (drought tolerant). Eight QTLs were identified for yield traits under drought. Grain yield QTL under drought on chromosome 1 (phenotypic variance explained (PVE) = 11.15%) co-localized with the only QTL for panicle number (PVE = 37.7%). The drought-tolerant parent N22 contributed the favorable alleles for all QTLs except qGN3.2 and qGN5.1 for grain number per panicle. Stress-responsive transcription factors, such as ethylene response factor, WD40 domain protein, zinc finger protein, and genes involved in lipid/sugar metabolism were linked to the QTLs, suggesting their possible role in drought tolerance mechanism of N22 in the background of Cocodrie, contributing to higher yield under drought. 
    more » « less
  4. null (Ed.)
    Fruit flavor is defined as the perception of the food by the olfactory and gustatory systems, and is one of the main determinants of fruit quality. Tomato flavor is largely determined by the balance of sugars, acids and volatile compounds. Several genes controlling the levels of these metabolites in tomato fruit have been cloned, including LIN5 , ALMT9 , AAT1 , CXE1 , and LoxC . The aim of this study was to identify any association of these genes with trait variation and to describe the genetic diversity at these loci in the red-fruited tomato clade comprised of the wild ancestor Solanum pimpinellifolium , the semi-domesticated species Solanum lycopersicum cerasiforme and early domesticated Solanum lycopersicum . High genetic diversity was observed at these five loci, including novel haplotypes that could be incorporated into breeding programs to improve fruit quality of modern tomatoes. Using newly available high-quality genome assemblies, we assayed each gene for potential functional causative polymorphisms and resolved a duplication at the LoxC locus found in several wild and semi-domesticated accessions which caused lower accumulation of lipid derived volatiles. In addition, we explored gene expression of the five genes in nine phylogenetically diverse tomato accessions. In general, the expression patterns of these genes increased during fruit ripening but diverged between accessions without clear relationship between expression and metabolite levels. 
    more » « less
  5. Abstract

    Hop production utilizes exclusively female plants, whereas male plants only serve to generate novel variation within breeding programs through crossing. Currently, hop lacks a rapid and accurate diagnostic marker to determine whether plants are male or female. Without a diagnostic marker, breeding programs may take 1–2 years to determine the sex of new seedlings. Previous research on sex-linked markers was restricted to specific populations or breeding programs and therefore had limited transferability or suffered from low scalability. A large collection of 765 hop genotypes with known sex phenotypes, genotyping-by-sequencing, and genome-wide association mapping revealed a highly significant marker on the sex chromosome (LOD score = 208.7) that predicted sex within our population with 96.2% accuracy. In this study, we developed a PCR allele competitive extension (PACE) assay for the diagnostic SNP and tested three quick DNA extraction methodologies for rapid, high-throughput genotyping. Additionally, the marker was validated in a separate population of 94 individuals from 15 families from the USDA-ARS hop breeding program in Prosser, WA with 96% accuracy. This diagnostic marker is located in a gene predicted to encode the basic helix-loop-helix transcription factor protein, a family of proteins that have been previously implicated in male sterility in a variety of plant species, which may indicate a role in determining hop sex. The marker is diagnostic, accurate, affordable, and highly scalable and has the potential to improve efficiency in hop breeding.

     
    more » « less