skip to main content


Title: Genome-wide identification and multiple abiotic stress transcript profiling of potassium transport gene homologs in Sorghum bicolor
Potassium (K+) is the most abundant cation that plays a crucial role in various cellular processes in plants. Plants have developed an efficient mechanism for the acquisition of K+ when grown in K+ deficient or saline soils. A total of 47 K+ transport gene homologs (27 HAKs, 4 HKTs, 2 KEAs, 9 AKTs, 2 KATs, 2 TPCs, and 1 VDPC) have been identified in Sorghum bicolor. Of 47 homologs, 33 were identified as K+ transporters and the remaining 14 as K+ channels. Chromosome 2 has been found as the hotspot of K+ transporters with 9 genes. Phylogenetic analysis revealed the conservation of sorghum K+ transport genes akin to Oryza sativa. Analysis of regulatory elements indicates the key roles that K+ transport genes play under different biotic and abiotic stress conditions. Digital expression data of different developmental stages disclosed that expressions were higher in milk, flowering, and tillering stages. Expression levels of the genes SbHAK27 and SbKEA2 were higher during milk, SbHAK17, SbHAK11, SbHAK18, and SbHAK7 during flowering, SbHAK18, SbHAK10, and 23 other gene expressions were elevated during tillering inferring the important role that K+ transport genes play during plant growth and development. Differential transcript expression was observed in different tissues like root, stem, and leaf under abiotic stresses such as salt, drought, heat, and cold stresses. Collectively, the in-depth genome-wide analysis and differential transcript profiling of K+ transport genes elucidate their role in ion homeostasis and stress tolerance mechanisms.  more » « less
Award ID(s):
2150087
NSF-PAR ID:
10395426
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Sindhu Sareen
Date Published:
Journal Name:
Frontiers of plant science
Volume:
13
ISSN:
0016-2167
Page Range / eLocation ID:
965530.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Alternative polyadenylation (APA) regulates diverse developmental and physiological processes through its effects on gene expression, mRNA stability, translatability, and transport.Sorghumis a major cereal crop in the world and, despite its importance, not much is known about the role of post‐transcriptional regulation in mediating responses to abiotic stresses inSorghum. A genome‐wide APA analysis unveiled widespread occurrence of APA inSorghumin response to drought, heat, and salt stress. Abiotic stress treatments incited changes in poly(A) site choice in a large number of genes. Interestingly, abiotic stresses led to the re‐directing of transcriptional output into non‐productive pathways defined by the class of poly(A) site utilized. This result revealed APA to be part of a larger global response ofSorghumto abiotic stresses that involves the re‐direction of transcriptional output into non‐productive transcriptional and translational pathways. Large numbers of stress‐inducible poly(A) sites could not be linked with known, annotated genes, suggestive of the existence of numerous unidentified genes whose expression is strongly regulated by abiotic stresses. Furthermore, we uncovered a novel stress‐specificcis‐element in intronic poly(A) sites used in drought‐ and heat‐stressed plants that might play an important role in non‐canonical poly(A) site choice in response to abiotic stresses.

     
    more » « less
  2. Plant intracellular immune receptor NLR (nucleotide-binding leucine-rich repeat) proteins sense the presence of pathogens and trigger strong and robust immune responses. NLR genes are known to be tightly controlled at the protein level, but little is known about their dynamics at the transcript level. In this study, we presented a meta-analysis of transcript dynamics of all 207 NLR genes in the Col-0 accession of Arabidopsis thaliana under various biotic and abiotic stresses based on 88 publicly available RNA sequencing datasets from 27 independent studies. We find that about two thirds of the NLR genes are generally induced by pathogens, immune elicitors, or salicylic acid (SA), suggesting that transcriptional induction of NLR genes might be an important mechanism in plant immunity regulation. By contrast, NLR genes induced by biotic stresses are often repressed by abscisic acid, high temperature and drought, suggesting that transcriptional regulation of NLR genes might be important for interaction between abiotic and biotic stress responses. In addition, pathogen-induced expression of some NLR genes are dependent on SA induction. Interestingly, a small group of NLR genes are repressed under certain biotic stress treatments, suggesting an unconventional function of this group of NLRs. This meta-analysis thus reveals the transcript dynamics of NLR genes under biotic and abiotic stress conditions and suggests a contribution of NLR transcript regulation to plant immunity as well as interactions between abiotic and biotic stress responses. 
    more » « less
  3. Salinity is one of the major detrimental abiotic stresses at the forefront of deterring crop productivity globally. Although the exogenous application of phytohormones has formerly proven efficacious to plants, their effect on the moderately stress-tolerant crop “Sorghum bicolor” remains elusive. To investigate this, S. bicolor seeds primed with methyl jasmonate (0; 10 and 15 μM MeJa) were exposed to salt (200 mM NaCl) stress, and their morpho-physiological, biochemical, and molecular attributes were measured. Salt stress significantly decreased shoot length and fresh weight by 50%, whereas dry weight and chlorophyll content were decreased by more than 40%. Furthermore, salt-stress-induced oxidative damage was evident by the formation of brown formazan spots (indicative of H2O2 production) on sorghum leaves and a more than 30% increase in MDA content. However, priming with MeJa improved growth, increased chlorophyll content, and prevented oxidative damage under salt stress. While 15 µM MeJa maintained proline content to the same level as the salt-stressed samples, total soluble sugars were maintained under 10 µM MeJa, indicating a high degree of osmotic adjustment. Shriveling and thinning of the epidermis and xylem tissues due to salt stress was prevented by MeJa, followed by a more than 70% decrease in the Na+/K+ ratio. MeJa also reversed the FTIR spectral shifts observed for salt-stressed plants. Furthermore, salt stress induced the expression of the jasmonic acid biosynthesis genes; linoleate 92-lipoxygenase 3, allene oxide synthase 1, allene oxide cyclase, and 12-oxophytodienoate reductase 1. In MeJa-primed plants, their expression was reduced, except for the 12-oxophytodienoate reductase 1 transcript, which further increased by 67%. These findings suggest that MeJa conferred salt-stress tolerance to S. bicolor through osmoregulation and synthesis of JA-related metabolites.

     
    more » « less
  4. SUMMARY

    Sorghum is one of the four major C4 crops that are considered to be tolerant to environmental extremes. Sorghum shows distinct growth responses to temperature stress depending on the sensitivity of the genetic background. About half of the transcripts in sorghum exhibit diurnal rhythmic expressions emphasizing significant coordination with the environment. However, an understanding of how molecular dynamics contribute to genotype‐specific stress responses in the context of the time of day is not known. We examined whether temperature stress and the time of day impact the gene expression dynamics in thermo‐sensitive and thermo‐tolerant sorghum genotypes. We found that time of day is highly influencing the temperature stress responses, which can be explained by the rhythmic expression of most thermo‐responsive genes. This effect is more pronounced in thermo‐tolerant genotypes, suggesting a stronger regulation of gene expression by the time of day and/or by the circadian clock. Genotypic differences were mostly observed on average gene expression levels, which may be responsible for contrasting sensitivities to temperature stress in tolerant versus susceptible sorghum varieties. We also identified groups of genes altered by temperature stress in a time‐of‐day and genotype‐specific manner. These include transcriptional regulators and several members of the Ca2+‐binding EF‐hand protein family. We hypothesize that expression variation of these genes between genotypes along with time‐of‐day independent regulation may contribute to genotype‐specific fine‐tuning of thermo‐responsive pathways. These findings offer a new opportunity to selectively target specific genes in efforts to develop climate‐resilient crops based on their time‐of‐day and genotype variation responses to temperature stress.

     
    more » « less
  5. High‐affinity nitrate transporters are considered to be the major transporter system for nitrate uptake in diatoms. In the diatom genus Skeletonema, three forms of genes encoding high‐affinity nitrate transporters (NRT2) were newly identified from transcriptomes generated as part of the marine microbial eukaryote transcriptome sequencing project. To examine the expression of each form of NRT2 under different nitrogen environments, laboratory experiments were conducted under nitrate‐sufficient, ammonium‐sufficient, and nitrate‐limited conditions using three ecologically important Skeletonema species: S. dohrnii, S. menzelii, and S. marinoi. Primers were developed for each NRT2 form and species and Q‐RT‐PCR was performed. For each NRT2 form, the three Skeletonema species had similar transcriptional patterns. The transcript levels of NRT2:1 were significantly elevated under nitrogen‐limited conditions, but strongly repressed in the presence of ammonium. The transcript levels of NRT2:2 were also repressed by ammonium, but increased 5‐ to 10‐fold under nitrate‐sufficient and nitrogen‐limited conditions. Finally, the transcript levels of NRT2:3 did not vary significantly under various nitrogen conditions, and behaved more like a constitutively expressed gene. Based on the observed transcript variation among NRT2 forms, we propose a revised model describing nitrate uptake kinetics regulated by multiple forms of nitrate transporter genes in response to various nitrogen conditions in Skeletonema. The differential NRT2 transcriptional responses among species suggest that species‐specific adaptive strategies exist within this genus to cope with environmental changes. 
    more » « less