This content will become publicly available on August 1, 2023
- Publication Date:
- NSF-PAR ID:
- 10395449
- Journal Name:
- Frontiers in Artificial Intelligence
- Volume:
- 5
- ISSN:
- 2624-8212
- Sponsoring Org:
- National Science Foundation
More Like this
-
Information coding by precise timing of spikes can be faster and more energy efficient than traditional rate coding. However, spike-timing codes are often brittle, which has limited their use in theoretical neuroscience and computing applications. Here, we propose a type of attractor neural network in complex state space and show how it can be leveraged to construct spiking neural networks with robust computational properties through a phase-to-timing mapping. Building on Hebbian neural associative memories, like Hopfield networks, we first propose threshold phasor associative memory (TPAM) networks. Complex phasor patterns whose components can assume continuous-valued phase angles and binary magnitudes can be stored and retrieved as stable fixed points in the network dynamics. TPAM achieves high memory capacity when storing sparse phasor patterns, and we derive the energy function that governs its fixed-point attractor dynamics. Second, we construct 2 spiking neural networks to approximate the complex algebraic computations in TPAM, a reductionist model with resonate-and-fire neurons and a biologically plausible network of integrate-and-fire neurons with synaptic delays and recurrently connected inhibitory interneurons. The fixed points of TPAM correspond to stable periodic states of precisely timed spiking activity that are robust to perturbation. The link established between rhythmic firing patterns and complexmore »
-
Statistical learning (SL), the ability to pick up patterns in sensory input, serves as one of the building blocks of language acquisition. Although SL has been studied extensively in developmental dyslexia (DD), much less is known about the way SL evolves over time. The handful of studies examining this question were all limited to the acquisition of motor sequential knowledge or highly learned segmented linguistic units. Here we examined memory consolidation of statistical regularities in adults with DD and typically developed (TD) readers by using auditory SL requiring the segmentation of units from continuous input, which represents one of the earliest learning challenges in language acquisition. DD and TD groups were exposed to tones in a probabilistically determined sequential structure varying in difficulty and subsequently tested for recognition of novel short sequences that adhered to this statistical pattern in immediate and delayed-recall sessions separated by a night of sleep. SL performance of the DD group at the easy and hard difficulty levels was poorer than that of the TD group in the immediate-recall session. Importantly, DD participants showed a significant overnight deterioration in SL performance at the medium difficulty level compared to TD, who instead showed overnight stabilization of themore »
-
Obeid, Iyad Selesnick (Ed.)Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEGmore »
-
Associative memory is a widespread self-learning method in biological livings, which enables the nervous system to remember the relationship between two concurrent events. The significance of rebuilding associative memory at a behavior level is not only to reveal a way of designing a brain-like self-learning neuromorphic system but also to explore a method of comprehending the learning mechanism of a nervous system. In this paper, an associative memory learning at a behavior level is realized that successfully associates concurrent visual and auditory information together (pronunciation and image of digits). The task is achieved by associating the large-scale artificial neural networks (ANNs) together instead of relating multiple analog signals. In this way, the information carried and preprocessed by these ANNs can be associated. A neuron has been designed, named signal intensity encoding neurons (SIENs), to encode the output data of the ANNs into the magnitude and frequency of the analog spiking signals. Then, the spiking signals are correlated together with an associative neural network, implemented with a three-dimensional (3-D) memristor array. Furthermore, the selector devices in the traditional memristor cells limiting the design area have been avoided by our novel memristor weight updating scheme. With the novel SIENs, the 3-D memristivemore »
-
Abstract Face memory, including the ability to recall a person’s name, is of major importance in social contexts. Like many other memory functions, it may rely on sleep. We investigated whether targeted memory reactivation during sleep could improve associative and perceptual aspects of face memory. Participants studied 80 face-name pairs, and then a subset of spoken names with associated background music was presented unobtrusively during a daytime nap. This manipulation preferentially improved name recall and face recognition for those reactivated face-name pairs, as modulated by two factors related to sleep quality; memory benefits were positively correlated with the duration of stage N3 sleep (slow-wave sleep) and negatively correlated with measures of sleep disruption. We conclude that (a) reactivation of specific face-name memories during sleep can strengthen these associations and the constituent memories, and that (b) the effectiveness of this reactivation depends on uninterrupted N3 sleep.