skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Don't let go: co‐fractionation mass spectrometry for untargeted mapping of protein–metabolite interactomes
SUMMARY The chemical complexity of metabolomes goes hand in hand with their functional diversity. Small molecules have many essential roles, many of which are executed by binding and modulating the function of a protein partner. The complex and dynamic protein–metabolite interaction (PMI) network underlies most if not all biological processes, but remains under‐characterized. Herein, we highlight how co‐fractionation mass spectrometry (CF‐MS), a well‐established approach to map protein assemblies, can be used for proteome and metabolome identification of the PMIs. We will review recent CF‐MS studies, discuss the main advantages and limitations, summarize the available CF‐MS guidelines, and outline future challenges and opportunities.  more » « less
Award ID(s):
2226270
PAR ID:
10395465
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Plant Journal
Volume:
113
Issue:
5
ISSN:
0960-7412
Page Range / eLocation ID:
p. 904-914
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This review presents progress made in the ambient analysis of proteins, in particular by desorption electrospray ionization‐mass spectrometry (DESI‐MS). Related ambient ionization techniques are discussed in comparison to DESI‐MS only to illustrate the larger context of protein analysis by ambient ionization mass spectrometry. The review describes early and current approaches for the analysis of undigested proteins, native proteins, tryptic digests, and indirect protein determination through reporter molecules. Applications to mass spectrometry imaging for protein spatial distributions, the identification of posttranslational modifications, determination of binding stoichiometries, and enzymatic transformations are discussed. The analytical capabilities of other ambient ionization techniques such as LESA and nano‐DESI currently exceed those of DESI‐MS for in situ surface sampling of intact proteins from tissues. This review shows, however, that despite its many limitations, DESI‐MS is making valuable contributions to protein analysis. The challenges in sensitivity, spatial resolution, and mass range are surmountable obstacles and further development and improvements to DESI‐MS is justified. 
    more » « less
  2. Abstract While many aspects of archaeal cell biology remain relatively unexplored, systems biology approaches like mass spectrometry (MS) based proteomics offer an opportunity for rapid advances. Unfortunately, the enormous amount of MS data generated often remains incompletely analyzed due to a lack of sophisticated bioinformatic tools and field-specific biological expertise for data interpretation. Here we present the initiation of the Archaeal Proteome Project (ArcPP), a community-based effort to comprehensively analyze archaeal proteomes. Starting with the model archaeonHaloferax volcanii, we reanalyze MS datasets from various strains and culture conditions. Optimized peptide spectrum matching, with strict control of false discovery rates, facilitates identifying > 72% of the reference proteome, with a median protein sequence coverage of 51%. These analyses, together with expert knowledge in diverse aspects of cell biology, provide meaningful insights into processes such as N-terminal protein maturation,N-glycosylation, and metabolism. Altogether, ArcPP serves as an invaluable blueprint for comprehensive prokaryotic proteomics. 
    more » « less
  3. Abstract Incorporation of CF2X groups beyond CF3into arene scaffolds is underdeveloped despite these groups’ utility as halogen‐bond donors and as precursors to bioisosteres. Herein, we report the synthesis, characterization, and comparative photochemistry of a suite of [Ag(II)(bpy)2O2CCF2X]+and Ag(II)(bpy)(O2CCF2X)2(bpy = 2,2´‐bipyridine, X = F, CF3, Cl, Br, H, CH3) carboxylate complexes. We find a dramatic effect of the X substituent on the efficiency of generating CF2X radicals by ligand‐to‐metal charge transfer (LMCT), with Ag(II) photoreduction rates varying by over an order of magnitude and quantum yields spanning over 20%. We provide insight into how electronic and structural perturbations of the Ag(II)–O2CCF2X core are manifested in the LMCT quantum efficiency. With this information in hand, Ag(II)‐mediated electrophotocatalytic CF2X functionalization is carried out on a range of (hetero)arenes. This work expands the nascent field of Ag(II)‐based photocatalysis by allowing for (hetero)aryl–CF2X functionalization directly from unactivated fluoroalkyl carboxylate precursors. 
    more » « less
  4. Naturally occurring amino acids have been broadly used as additives to improve protein solubility and inhibit aggregation. In this study, improvements in protein signal intensity obtained with the addition of l -serine, and structural analogs, to the desorption electrospray ionization mass spectrometry (DESI-MS) spray solvent were measured. The results were interpreted at the hand of proposed mechanisms of solution additive effects on protein solubility and dissolution. DESI-MS allows for these processes to be studied efficiently using dilute concentrations of additives and small amounts of proteins, advantages that represent real benefits compared to classical methods of studying protein stability and aggregation. We show that serine significantly increases the protein signal in DESI-MS when native proteins are undergoing unfolding during the dissolution process with an acidic solvent system ( p -value = 0.0001), or with ammonium bicarbonate under denaturing conditions for proteins with high isoelectric points ( p -value = 0.001). We establish that a similar increase in the protein signal cannot be observed with direct ESI-MS, and the observed increase is therefore not related to ionization processes or changes in the physical properties of the bulk solution. The importance of the presence of serine during protein conformational changes while undergoing dissolution is demonstrated through comparisons between the analyses of proteins deposited in native or unfolded states and by using native state-preserving and denaturing desorption solvents. We hypothesize that direct, non-covalent interactions involving all three functional groups of serine are involved in the beneficial effect on protein solubility and dissolution. Supporting evidence for a direct interaction include a reduction in efficacy with d -serine or the racemic mixture, indicating a non-bulk-solution physical property effect; insensitivity to the sample surface type or relative placement of serine addition; and a reduction in efficacy with any modifications to the serine structure, most notably the carboxyl functional group. An alternative hypothesis, also supported by some of our observations, could involve the role of serine clusters in the mechanism of solubility enhancement. Our study demonstrates the capability of DESI-MS together with complementary ESI-MS experiments as a novel tool for understanding protein solubility and dissolution and investigating the mechanism of action for solubility-enhancing additives. 
    more » « less
  5. Abstract MotivationTandem mass spectrometry (MS/MS) is a crucial technology for large-scale proteomic analysis. The protein database search or the spectral library search are commonly used for peptide identification from MS/MS spectra, which, however, may face challenges due to experimental variations between replicated spectra and similar fragmentation patterns among distinct peptides. To address this challenge, we present SpecEncoder, a deep metric learning approach to address these challenges by transforming MS/MS spectra into robust and sensitive embedding vectors in a latent space. The SpecEncoder model can also embed predicted MS/MS spectra of peptides, enabling a hybrid search approach that combines spectral library and protein database searches for peptide identification. ResultsWe evaluated SpecEncoder on three large human proteomics datasets, and the results showed a consistent improvement in peptide identification. For spectral library search, SpecEncoder identifies 1%–2% more unique peptides (and PSMs) than SpectraST. For protein database search, it identifies 6%–15% more unique peptides than MSGF+ enhanced by Percolator, Furthermore, SpecEncoder identified 6%–12% additional unique peptides when utilizing a combined library of experimental and predicted spectra. SpecEncoder can also identify more peptides when compared to deep-learning enhanced methods (MSFragger boosted by MSBooster). These results demonstrate SpecEncoder’s potential to enhance peptide identification for proteomic data analyses. Availability and ImplementationThe source code and scripts for SpecEncoder and peptide identification are available on GitHub at https://github.com/lkytal/SpecEncoder. Contact: hatang@iu.edu. 
    more » « less