skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrogen migration in inner-shell ionized halogenated cyclic hydrocarbons
Abstract We have studied the fragmentation of the brominated cyclic hydrocarbons bromocyclo-propane, bromocyclo-butane, and bromocyclo-pentane upon Br(3d) and C(1s) inner-shell ionization using coincidence ion momentum imaging. We observe a substantial yield of CH3+fragments, whose formation requires intramolecular hydrogen (or proton) migration, that increases with molecular size, which contrasts with prior observations of hydrogen migration in linear hydrocarbon molecules. Furthermore, by inspecting the fragment ion momentum correlations of three-body fragmentation channels, we conclude that CHx+fragments (withx = 0, …, 3) with an increasing number of hydrogens are more likely to be produced via sequential fragmentation pathways. Overall trends in the molecular-size-dependence of the experimentally observed kinetic energy releases and fragment kinetic energies are explained with the help of classical Coulomb explosion simulations.  more » « less
Award ID(s):
1753324
PAR ID:
10395671
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The valence photoionization of light and deuterated methanol dimers was studied by imaging photoelectron photoion coincidence spectroscopy in the 10.00–10.35 eV photon energy range. Methanol clusters were generated in a rich methanol beam in nitrogen after expansion into vacuum. They generally photoionize dissociatively to protonated methanol cluster cations, (CH 3 OH) n H + . However, the stable dimer parent ion (CH 3 OH) 2 + is readily detected below the dissociation threshold to yield the dominant CH 3 OH 2 + fragment ion. In addition to protonated methanol, we could also detect the water- and methyl-loss fragment ions of the methanol dimer cation for the first time. These newly revealed fragmentation channels are slow and cannot compete with protonated methanol cation formation at higher internal energies. In fact, the water- and methyl-loss fragment ions appear together and disappear at a ca. 150 meV higher energy in the breakdown diagram. Experiments with selectively deuterated methanol samples showed H scrambling involving two hydroxyl and one methyl hydrogens prior to protonated methanol formation. These insights guided the potential energy surface exploration to rationalize the dissociative photoionization mechanism. The potential energy surface was further validated by a statistical model including isotope effects to fit the experiment for the light and the perdeuterated methanol dimers simultaneously. The (CH 3 OH) 2 + parent ion dissociates via five parallel channels at low internal energies. The loss of both CH 2 OH and CH 3 O neutral fragments leads to protonated methanol. However, the latter, direct dissociation channel is energetically forbidden at low energies. Instead, an isomerization transition state is followed by proton transfer from a methyl group, which leads to the CH 3 (H)OH + ⋯CH 2 OH ion, the precursor to the CH 2 OH-, H 2 O-, and CH 3 -loss fragments after further isomerization steps, in part by a roaming mechanism. Water loss yields the ethanol cation, and two paths are proposed to account for m/z 49 fragment ions after CH 3 loss. The roaming pathways are quickly outcompeted by hydrogen bond breaking to yield CH 3 OH 2 + , which explains the dominance of the protonated methanol fragment ion in the mass spectrum. 
    more » « less
  2. A<sc>bstract</sc> In this paper, we investigate the heavy quark (HQ) mass effects on the transverse momentum dependent fragmentation function (TMDFF). We first calculate the one-loop TMDFF initiated by a heavy quark. We then investigate the HQ TMDFF in the limit where the transverse momentum,qis small compared to the heavy quark mass,q≪mand also in the opposite limit whereq≫m. As applications of the HQ TMDFF, we study the HQ transverse momentum dependent jet fragmentation function, where the heavy quark fragments into a jet containing a heavy hadron, and we investigate a heavy hadron’s transverse momentum dependent distribution with respect to the thrust axis ine+ecollisions. 
    more » « less
  3. Abstract We present a method to use long‐range CH coupling constants to derive the correct diastereoisomer from the molecular constitution of small molecules. A set of 792JCHand3JCHvalues collected from a single HSQMBC experiment on a sample of strychnine were used in the CASE‐3D (computer‐assisted 3D structure elucidation) protocol. In addition to the most commonly used3JCHcoupling constants, the subset of 322JCHvalues alone showed an excellent degree of configuration selection. The study is mainly based on comparison of DFT‐calculated2,3JCHvalues with experimental ones, critical for the case of2JCH. But the configuration selection also works well using3JCHvalues predicted from a semi‐empirical Karplus‐based equation limited to H−C−C−C fragments. The robustness, shown using strychnine as a proof of concept, makes theJ‐based CASE‐3D analysis a viable option for the application in fields such as peptide and carbohydrate research, organic synthesis, natural‐product identification and analysis, as well as medicinal chemistry. 
    more » « less
  4. Context.The methyl cation (CH3+) has recently been discovered in the interstellar medium through the detection of 7 μm (1400 cm−1) features toward the d203-506 protoplanetary disk by the JWST. Line-by-line spectroscopic assignments of these features, however, were unsuccessful due to complex intramolecular perturbations preventing a determination of the excitation and abundance of the species in that source. Aims.Comprehensive rovibrational assignments guided by theoretical and experimental laboratory techniques provide insight into the excitation mechanisms and chemistry of CH3+in d203-506. Methods.The rovibrational structure of CH3+was studied theoretically by a combination of coupled-cluster electronic structure theory and (quasi-)variational nuclear motion calculations. Two experimental techniques were used to confirm the rovibrational structure of CH3+:(1) infrared leak-out spectroscopy of the methyl cation, and (2) rotationally resolved photoelectron spectroscopy of the methyl radical (CH3). In (1), CH3+ions, produced by the electron impact dissociative ionization of methane, were injected into a 22-pole ion trap where they were probed by the pulses of infrared radiation from the FELIX free electron laser. In (2), neutral CH3, produced by CH3NO2pyrolysis in a molecular beam, was probed by pulsed-field ionization zero-kinetic-energy photoelectron spectroscopy. Results.The quantum chemical calculations performed in this study have enabled a comprehensive spectroscopic assignment of thev2+andv4+bands of CH3+detected by the JWST. The resulting spectroscopic constants and derived EinsteinAcoefficients fully reproduce both the infrared and photoelectron spectra and permit the rotational temperature of CH3+(T= 660 ± 80 K) in d203-506 to be derived. A beam-averaged column density of CH3+in this protoplanetary disk is also estimated. 
    more » « less
  5. Abstract The previously unknown silylgermylidyne radical (H3SiGe; X2A′′) was prepared via the bimolecular gas phase reaction of ground state silylidyne radicals (SiH; X2Π) with germane (GeH4; X1A1) under single collision conditions in crossed molecular beams experiments. This reaction begins with the formation of a van der Waals complex followed by insertion of silylidyne into a germanium‐hydrogen bond forming the germylsilyl radical (H3GeSiH2). A hydrogen migration isomerizes this intermediate to the silylgermyl radical (H2GeSiH3), which undergoes a hydrogen shift to an exotic, hydrogen‐bridged germylidynesilane intermediate (H3Si(μ‐H)GeH); this species emits molecular hydrogen forming the silylgermylidyne radical (H3SiGe). Our study offers a remarkable glance at the complex reaction dynamics and inherent isomerization processes of the silicon‐germanium system, which are quite distinct from those of the isovalent hydrocarbon system (ethyl radical; C2H5) eventually affording detailed insights into an exotic chemistry and intriguing chemical bonding of silicon‐germanium species at the microscopic level exploiting crossed molecular beams. 
    more » « less