Abstract Coastal salt marshes store large amounts of carbon but the magnitude and patterns of greenhouse gas (GHG; i.e., carbon dioxide (CO2) and methane (CH4)) fluxes are unclear. Information about GHG fluxes from these ecosystems comes from studies of sediments or at the ecosystem‐scale (eddy covariance) but fluxes from tidal creeks are unknown. We measured GHG concentrations in water, water quality, meteorological parameters, sediment CO2efflux, ecosystem‐scale GHG fluxes, and plant phenology; all at half‐hour intervals over 1 year. Manual creek GHG flux measurements were used to calculate gas transfer velocity (k) and parameterize a model of water‐to‐atmosphere GHG fluxes. The creek was a source of GHGs to the atmosphere where tidal patterns controlled diel variability. Dissolved oxygen and wind speed were negatively correlated with creek CH4efflux. Despite lacking a seasonal pattern, creek CO2efflux was correlated with drivers such as turbidity across phenological phases. Overall, nighttime creek CO2efflux (3.6 ± 0.63 μmol/m2/s) was at least 2 times higher than nighttime marsh sediment CO2efflux (1.5 ± 1.23 μmol/m2/s). Creek CH4efflux (17.5 ± 6.9 nmol/m2/s) was 4 times lower than ecosystem‐scale CH4fluxes (68.1 ± 52.3 nmol/m2/s) across the year. These results suggest that tidal creeks are potential hotspots for CO2emissions and could contribute to lateral transport of CH4to the coastal ocean due to supersaturation of CH4(>6,000 μmol/mol) in water. This study provides insights for modeling GHG efflux from tidal creeks and suggests that changes in tide stage overshadow water temperature in determining magnitudes of fluxes. 
                        more » 
                        « less   
                    
                            
                            Carbon Dioxide and Methane Emissions from a Temperate Salt Marsh Tidal Creek: Dataset
                        
                    
    
            Coastal salt marshes store large amounts of carbon but the magnitude and patterns of greenhouse gas (GHG; i.e., carbon dioxide (CO2</sub>) and methane (CH4</sub>)) fluxes are unclear. Information about GHG fluxes from these ecosystems comes from studies of sediments or at the ecosystem-scale (eddy covariance) but fluxes from tidal creeks are unknown. </div>This dataset includes GHG concentrations in water, water quality, meteorology, sediment CO2</sub> efflux, ecosystem-scale GHG fluxes, and plant phenology; all at half-hour time-steps over one year.</div></div>This study was carried out in the St. Jones Reserve, a component of the Delaware National Estuarine Research Reserve in Dover, Delaware, U.S.A. The study site is part of the following networks:</div></div>- AmeriFlux (https://ameriflux.lbl.gov/sites/siteinfo/US-StJ) </div>- Phenocam (https://phenocam.sr.unh.edu/webcam/sites/stjones/) </div></div>The GHG concentration and efflux sampling point was located at Aspen Landing within a microtidal (mean tide range of 1.5 m), mesohaline (typical salinity of 5-18 ppt) salt marsh (Delaware Department of Natural Resources and Environmental Control, 2006) tidal creek.</div></div>Main reference:</div> Trifunovic, B., Vázquez‐Lule, A., Capooci, M., Seyfferth, A. L., Moffat, C., & Vargas, R. (2020). Carbon dioxide and methane emissions from a temperate salt marsh tidal creek. Journal of Geophysical Research: Biogeosciences, 125, e2019JG005558. https://doi.org/ 10.1029/2019JG005558 </p> </div> </div> </div></div> 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1652594
- PAR ID:
- 10395724
- Publisher / Repository:
- figshare
- Date Published:
- Subject(s) / Keyword(s):
- Ecology 50301 Carbon Sequestration Science 50101 Ecological Impacts of Climate Change 50102 Ecosystem Function 50206 Environmental Monitoring Hydrology
- Format(s):
- Medium: X Size: 2098493 Bytes
- Size(s):
- 2098493 Bytes
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The exchange of multiple greenhouse gases (i.e., CO2 </sub>and CH4</sub>) between tree stems and the atmosphere represents a knowledge gap in the global carbon cycle. Stem CO2</sub> and CH4</sub> fluxes vary across time and space and is unclear which are their individual or shared drivers. This dataset contains information of CO2</sub> and CH4</sub> fluxes at different stem heights combining manual (biweekly; n=678) and automated (hourly; n>38,000) measurements in a temperate upland forest.</div>This study was performed in an upland forested area at the St. Jones Reserve [39°5’20”N, 75°26’21”W], a component of the Delaware National Estuarine Research Reserve (DNERR).</div></div>The dominant vegetation species are bitternut hickory (Carya cordiformis</i>), eastern red cedar (Juniperus virginiana</i> L.), American holly (Ilex opaca</i> (Ashe)), sweet gum (Liquidambar styraciflua</i> L.) and black gum (Nyssa sylvatica</i> (Marshall)), with an overall tree density of 678 stems ha-1</sup> and mean diameter at breast height (DBH) of 25.7±13.9 cm (mean±sd). We studied bitternut hickory, which is one of the most important species in the study site, accounting for 24.9% of the total basal area.</div></div>For code </div>more » « less
- 
            Abstract Methane (CH4) is a potent greenhouse gas (GHG) with atmospheric concentrations that have nearly tripled since pre‐industrial times. Wetlands account for a large share of global CH4emissions, yet the magnitude and factors controlling CH4fluxes in tidal wetlands remain uncertain. We synthesized CH4flux data from 100 chamber and 9 eddy covariance (EC) sites across tidal marshes in the conterminous United States to assess controlling factors and improve predictions of CH4emissions. This effort included creating an open‐source database of chamber‐based GHG fluxes (https://doi.org/10.25573/serc.14227085). Annual fluxes across chamber and EC sites averaged 26 ± 53 g CH4m−2 year−1, with a median of 3.9 g CH4m−2 year−1, and only 25% of sites exceeding 18 g CH4m−2 year−1. The highest fluxes were observed at fresh‐oligohaline sites with daily maximum temperature normals (MATmax) above 25.6°C. These were followed by frequently inundated low and mid‐fresh‐oligohaline marshes with MATmax ≤25.6°C, and mesohaline sites with MATmax >19°C. Quantile regressions of paired chamber CH4flux and porewater biogeochemistry revealed that the 90th percentile of fluxes fell below 5 ± 3 nmol m−2 s−1at sulfate concentrations >4.7 ± 0.6 mM, porewater salinity >21 ± 2 psu, or surface water salinity >15 ± 3 psu. Across sites, salinity was the dominant predictor of annual CH4fluxes, while within sites, temperature, gross primary productivity (GPP), and tidal height controlled variability at diel and seasonal scales. At the diel scale, GPP preceded temperature in importance for predicting CH4flux changes, while the opposite was observed at the seasonal scale. Water levels influenced the timing and pathway of diel CH4fluxes, with pulsed releases of stored CH4at low to rising tide. This study provides data and methods to improve tidal marsh CH4emission estimates, support blue carbon assessments, and refine national and global GHG inventories.more » « less
- 
            Abstract Tidal salt marshes are important ecosystems in the global carbon cycle. Understanding their net carbon exchange with the atmosphere is required to accurately estimate their net ecosystem carbon budget (NECB). In this study, we present the interannual net ecosystem exchange (NEE) of CO2derived from eddy covariance (EC) for aSpartina alterniflorasalt marsh. We found interannual NEE could vary up to 3‐fold and range from −58.5 ± 11.3 to −222.9 ± 12.4 g C m−2 year−1in 2016 and 2020, respectively. Further, we found that atmospheric CO2fluxes were spatially dependent and varied across short distances. High biomass regions along tidal creek and estuary edges had up to 2‐fold higher annual NEE than lower biomass marsh interiors. In addition to the spatial variation of NEE, regions of the marsh represented by distinct canopy zonation responded to environmental drivers differently. Low elevation edges (with taller canopies) had a higher correlation with river discharge (R2 = 0.61), the main freshwater input into the system, while marsh interiors (with short canopies) were better correlated with in situ precipitation (R2 = 0.53). Lastly, we extrapolated interannual NEE to the wider marsh system, demonstrating the potential underestimation of annual NEE when not considering spatially explicit rates of NEE. Our work provides a basis for further research to understand the temporal and spatial dynamics of productivity in coastal wetlands, ecosystems which are at the forefront of experiencing climate change induced variability in precipitation, temperature, and sea level rise that have the potential to alter ecosystem productivity.more » « less
- 
            Blue carbon (C) ecosystems (mangroves, salt marshes, and seagrass beds) sequester high amounts of C, which can be respired back into the atmosphere, buried for long periods, or exported to adjacent ecosystems by tides. The lateral exchange of C between a salt marsh and adjacent water is a key factor that determines whether a salt marsh is a C source (i.e., outwelling) or sink in an estuary. We measured salinity, particulate organic carbon (POC), and dissolved organic carbon (DOC) seasonally over eight tidal cycles in a tidal creek at the Chongming Dongtan wetland from July 2017 to April 2018 to determine whether the marsh was a source or sink for estuarine C. POC and DOC fluxes were significantly correlated in the four seasons driven by water fluxes, but the concentration of DOC and POC were positively correlated only in autumn and winter. DOC and POC concentrations were the highest in autumn (3.54 mg/L and 4.19 mg/L, respectively) and the lowest in winter and spring (1.87 mg/L and 1.51 mg/L, respectively). The tidal creek system in different seasons showed organic carbon (OC) export, and the organic carbon fluxes during tidal cycles ranged from –12.65 to 4.04 g C/m2. The intensity showed significant seasonal differences, with the highest in summer, the second in autumn, and the lowest in spring. In different seasons, organic carbon fluxes during spring tides were significantly higher than that during neap tides. Due to the tidal asymmetry of the Yangtze River estuary and the relatively young stage, the salt marshes in the study area acted as a strong lateral carbon source.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
