- Award ID(s):
- 2046984
- PAR ID:
- 10395799
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 49
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The goddard and saturn genes are essential for Drosophila male fertility and may have arisen de novoNew genes arise through a variety of mechanisms, including the duplication of existing genes and the de novo birth of genes from noncoding DNA sequences. While there are numerous examples of duplicated genes with important func- tional roles, the functions of de novo genes remain largely unexplored. Many newly evolved genes are expressed in the male reproductive tract, suggesting that these evolutionary innovations may provide advantages to males experiencing sexual selection. Using testis-specific RNA interference, we screened 11 putative de novo genes in Drosophila mela- nogaster for effects on male fertility and identified two, goddard and saturn, that are essential for spermatogenesis and sperm function. Goddard knockdown (KD) males fail to produce mature sperm, while saturn KD males produce few sperm, and these function inefficiently once transferred to females. Consistent with a de novo origin, both genes are identifiable only in Drosophila and are predicted to encode proteins with no sequence similarity to any annotated protein. However, since high levels of divergence prevented the unambiguous identification of the noncoding sequences from which each gene arose, we consider goddard and saturn to be putative de novo genes. Within Drosophila, both genes have been lost in certain lineages, but show conserved, male-specific patterns of expression in the species in which they are found. Goddard is consistently found in single-copy and evolves under purifying selection. In contrast, saturn has diversified through gene duplication and positive selection. These data suggest that de novo genes can acquire essential roles in male reproduction.more » « less
-
ABSTRACT Posttranslational modification of a protein, either alone or in combination with other modifications, can control properties of that protein, such as enzymatic activity, localization, stability, or interactions with other molecules. N -ε-Lysine acetylation is one such modification that has gained attention in recent years, with a prevalence and significance that rival those of phosphorylation. This review will discuss the current state of the field in bacteria and some of the work in archaea, focusing on both mechanisms of N -ε-lysine acetylation and methods to identify, quantify, and characterize specific acetyllysines. Bacterial N -ε-lysine acetylation depends on both enzymatic and nonenzymatic mechanisms of acetylation, and recent work has shed light into the regulation of both mechanisms. Technological advances in mass spectrometry have allowed researchers to gain insight with greater biological context by both (i) analyzing samples either with stable isotope labeling workflows or using label-free protocols and (ii) determining the true extent of acetylation on a protein population through stoichiometry measurements. Identification of acetylated lysines through these methods has led to studies that probe the biological significance of acetylation. General and diverse approaches used to determine the effect of acetylation on a specific lysine will be covered.more » « less
-
ABSTRACT Acetylation is a broadly conserved mechanism of covalently modifying the proteome to precisely control protein activity. In bacteria, central metabolic enzymes and regulatory proteins, including those involved in virulence, can be targeted for acetylation. In this study, we directly link a putative acetylation system to metabolite-dependent virulence in the pathogen Vibrio cholerae . We demonstrate that the cobB and yfiQ genes, which encode homologs of a deacetylase and an acetyltransferase, respectively, modulate V. cholerae metabolism of acetate, a bacterially derived short-chain fatty acid with important physiological roles in a diversity of host organisms. In Drosophila melanogaster , a model arthropod host for V. cholerae infection, the pathogen consumes acetate within the gastrointestinal tract, which contributes to fly mortality. We show that deletion of cobB impairs growth on acetate minimal medium, delays the consumption of acetate from rich medium, and reduces virulence of V. cholerae toward Drosophila . These impacts can be reversed by complementing cobB or by introducing a deletion of yfiQ into the Δ cobB background. We further show that cobB controls the accumulation of triglycerides in the Drosophila midgut, which suggests that cobB directly modulates metabolite levels in vivo . In Escherichia coli K-12, yfiQ is upregulated by cAMP-cAMP receptor protein (CRP), and we identified a similar pattern of regulation in V. cholerae , arguing that the system is activated in response to similar environmental cues. In summary, we demonstrate that proteins likely involved in acetylation can modulate the outcome of infection by regulating metabolite exchange between pathogens and their colonized hosts. IMPORTANCE The bacterium Vibrio cholerae causes severe disease in humans, and strains can persist in the environment in association with a wide diversity of host species. By investigating the molecular mechanisms that underlie these interactions, we can better understand constraints affecting the ecology and evolution of this global pathogen. The Drosophila model of Vibrio cholerae infection has revealed that bacterial regulation of acetate and other small metabolites from within the fly gastrointestinal tract is crucial for its virulence. Here, we demonstrate that genes that may modify the proteome of V. cholerae affect virulence toward Drosophila , most likely by modulating central metabolic pathways that control the consumption of acetate as well as other small molecules. These findings further highlight the many layers of regulation that tune bacterial metabolism to alter the trajectory of interactions between bacteria and their hosts.more » « less
-
One of the challenges of studying synaptic structure and function is accessibility. Some of the earliest readily identifiable and accessible synapses were from the frog and various arthropods. To address questions regarding mechanisms that underlie synaptic development and function, genetically tractable systems were required, and researchers turned to the
Drosophila melanogaster embryonic/larval neuromuscular preparation.Drosophila embryos are transparent and can be labeled with antibodies or probes and imaged in whole-mount preparation for structural analysis. Embryos can also be dissected to visualize the entire body wall musculature as well as finer details including live protein trafficking and protein–protein interactions. Whereas younger dissected embryos can be mounted directly onto charged slides, more mature embryos and larvae develop a cuticle that impedes this adherence, so different techniques must be applied. In this protocol, we detail how to manufacture dissection tools and collect embryos, and discuss the individual steps of dissecting late-stage embryos, early first-instar larvae, and late-stage third-instar larvae. -
Abstract Metagenomics is the study of all genomic content contained in given microbial communities. Metagenomic functional analysis aims to quantify protein families and reconstruct metabolic pathways from the metagenome. It plays a central role in understanding the interaction between the microbial community and its host or environment. De novo functional analysis, which allows the discovery of novel protein families, remains challenging for high-complexity communities. There are currently three main approaches for recovering novel genes or proteins: de novo nucleotide assembly, gene calling and peptide assembly. Unfortunately, their information dependency has been overlooked, and each has been formulated as an independent problem. In this work, we develop a sophisticated workflow called integrated Metagenomic Protein Predictor (iMPP), which leverages the information dependencies for better de novo functional analysis. iMPP contains three novel modules: a hybrid assembly graph generation module, a graph-based gene calling module, and a peptide assembly-based refinement module. iMPP significantly improved the existing gene calling sensitivity on unassembled metagenomic reads, achieving a 92–97% recall rate at a high precision level (>85%). iMPP further allowed for more sensitive and accurate peptide assembly, recovering more reference proteins and delivering more hypothetical protein sequences. The high performance of iMPP can provide a more comprehensive and unbiased view of the microbial communities under investigation. iMPP is freely available from https://github.com/Sirisha-t/iMPP.