skip to main content


Title: Sea ice directs changes in bowhead whale phenology through the Bering Strait
Abstract Background

Climate change is warming the Arctic faster than the rest of the planet. Shifts in whale migration timing have been linked to climate change in temperate and sub-Arctic regions, and evidence suggests Bering–Chukchi–Beaufort (BCB) bowhead whales (Balaena mysticetus) might be overwintering in the Canadian Beaufort Sea.

Methods

We used an 11-year timeseries (spanning 2009–2021) of BCB bowhead whale presence in the southern Chukchi Sea (inferred from passive acoustic monitoring) to explore relationships between migration timing and sea ice in the Chukchi and Bering Seas.

Results

Fall southward migration into the Bering Strait was delayed in years with less mean October Chukchi Sea ice area and earlier in years with greater sea ice area (p = 0.04, r2 = 0.40). Greater mean October–December Bering Sea ice area resulted in longer absences between whales migrating south in the fall and north in the spring (p < 0.01, r2 = 0.85). A stepwise shift after 2012–2013 shows some whales are remaining in southern Chukchi Sea rather than moving through the Bering Strait and into the northwestern Bering Sea for the winter. Spring northward migration into the southern Chukchi Sea was earlier in years with less mean January–March Chukchi Sea ice area and delayed in years with greater sea ice area (p < 0.01, r2 = 0.82).

Conclusions

As sea ice continues to decline, northward spring-time migration could shift earlier or more bowhead whales may overwinter at summer feeding grounds. Changes to bowhead whale migration could increase the overlap with ships and impact Indigenous communities that rely on bowhead whales for nutritional and cultural subsistence.

 
more » « less
Award ID(s):
1107106 2138801
NSF-PAR ID:
10395881
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Movement Ecology
Volume:
11
Issue:
1
ISSN:
2051-3933
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Halliday, William David (Ed.)
    The Distributed Biological Observatory (DBO) was established to detect environmental changes in the Pacific Arctic by regular monitoring of biophysical responses in each of 8 DBO regions. Here we examine the occurrence of bowhead and beluga whale vocalizations in the western Beaufort Sea acquired by acoustic instruments deployed from September 2008-July 2014 and September 2016-October 2018 to examine inter-annual variability of these Arctic endemic species in DBO Region 6. Acoustic data were collected on an oceanographic mooring deployed in the Beaufort shelfbreak jet at ~71.4°N, 152.0°W. Spectrograms of acoustic data files were visually examined for the presence or absence of known signals of bowhead and beluga whales. Weekly averages of whale occurrence were compared with outputs of zooplankton, temperature and sea ice from the BIOMAS model to determine if any of these variables influenced whale occurrence. In addition, the dates of acoustic whale passage in the spring and fall were compared to annual sea ice melt-out and freeze-up dates to examine changes in phenology. Neither bowhead nor beluga whale migration times changed significantly in spring, but bowhead whales migrated significantly later in fall from 2008–2018. There were no clear relationships between bowhead whales and the environmental variables, suggesting that the DBO 6 region is a migratory corridor, but not a feeding hotspot, for this species. Surprisingly, beluga whale acoustic presence was related to zooplankton biomass near the mooring, but this is unlikely to be a direct relationship: there are likely interactions of environmental drivers that result in higher occurrence of both modeled zooplankton and belugas in the DBO 6 region. The environmental triggers that drive the migratory phenology of the two Arctic endemic cetacean species likely extend from Bering Sea transport of heat, nutrients and plankton through the Chukchi and into the Beaufort Sea. 
    more » « less
  2. Ummenhofer, Caroline (Ed.)
    Changes in gray whale ( Eschrichtius robustus ) phenology and distribution are related to observed and hypothesized prey availability, bottom water temperature, salinity, sea ice persistence, integrated water column and sediment chlorophyll a , and patterns of wind-driven biophysical forcing in the northern Bering and eastern Chukchi seas. This portion of the Pacific Arctic includes four Distributed Biological Observatory (DBO) sampling regions. In the Bering Strait area, passive acoustic data showed marked declines in gray whale calling activity coincident with unprecedented wintertime sea ice loss there in 2017–2019, although some whales were seen there during DBO cruises in those years. In the northern Bering Sea, sightings during DBO cruises show changes in gray whale distribution coincident with a shrinking field of infaunal amphipods, with a significant decrease in prey abundance (r = -0.314, p<0.05) observed in the DBO 2 region over the 2010–2019 period. In the eastern Chukchi Sea, sightings during broad scale aerial surveys show that gray whale distribution is associated with localized areas of high infaunal crustacean abundance. Although infaunal crustacean prey abundance was unchanged in DBO regions 3, 4 and 5, a mid-decade shift in gray whale distribution corresponded to both: (i) a localized increase in infaunal prey abundance in DBO regions 4 and 5, and (ii) a correlation of whale relative abundance with wind patterns that can influence epi-benthic and pelagic prey availability. Specifically, in the northeastern Chukchi Sea, increased sighting rates (whales/km) associated with an ~110 km (60 nm) offshore shift in distribution was positively correlated with large scale and local wind patterns conducive to increased availability of krill. In the southern Chukchi Sea, gray whale distribution clustered in all years near an amphipod-krill ‘hotspot’ associated with a 50-60m deep trough. We discuss potential impacts of observed and inferred prey shifts on gray whale nutrition in the context of an ongoing unusual gray whale mortality event. To conclude, we use the conceptual Arctic Marine Pulses (AMP) model to frame hypotheses that may guide future research on whales in the Pacific Arctic marine ecosystem. 
    more » « less
  3. Abstract

    Data from Bering‐Chukchi‐Beaufort Seas bowhead whales (Balaena mysticetus), harvested during 1973–2021 by aboriginal subsistence hunters, were used to estimate reproductive parameters: length at sexual maturity (LSM), age at sexual maturity (ASM), pregnancy rate (PR), and calving interval. Sexual maturity (N = 187 females) was determined from the presence/absence of corpora in the ovaries, or a fetus. Using sampling bias‐corrected logistic regression, LSM was estimated at 13.5 m, 95% CI [13.0, 13.8]. There was a downward trend in LSM over time, statistically significant with one method but marginal with another. A growth model translated this estimate to an ASM estimate of 23.5 years, 95% CI [20.4, 26.7]. Pregnancy rate was determined from mature females (N = 125), and from a subset limited to certain autumn‐caught whales (n = 37) to reduce bias. The PR was estimated at 0.46 globally, 95% CI [0.36, 0.55] and 0.38 for the autumn sample, 95% CI [0.20, 0.51]. Both estimated PRs are consistent with a 3‐year calving interval, because the larger estimate includes two cohorts of pregnant whales harvested in spring, and bowhead whale gestation is longer than 12 months. These analyses represent the most conclusive empirical estimates of ASM, LSM, and PR for this bowhead whale stock from the largest available data sets to date.

     
    more » « less
  4. Abstract

    Recent climate change has caused declines in ice coverage which have lengthened the open water season in the Arctic and increased access to resources and shipping routes. These changes have resulted in more vessel activity in seasonally ice-covered regions. While traffic is increasing in the ice-free season, the amount of vessel activity in the marginal ice zone (ice concentration 15–80%) or in pack ice (>80% concentration) remains unclear. Understanding patterns of vessel activities in ice is important given increased safety challenges and environmental impacts. Here, we couple high-resolution ship tracking information with sea ice thickness and concentration data to quantify vessel activity in ice-covered areas of the Pacific Arctic (northern Bering, Chukchi, and western Beaufort Seas). This region is a geo-strategically critical area that contains globally important commercial fisheries and serves as a corridor for Arctic access for wildlife and vessels. We find that vessel traffic in the marginal ice zone is widely distributed across the study area while vessel traffic in pack ice is concentrated along known shipping routes and in areas of natural resource development. Of the statistically significant relationships between vessel traffic and both sea ice concentration and thickness, over 99% are negative, indicating that increasing sea ice is associated with decreasing vessel traffic on a monthly time scale. Furthermore, there is substantial vessel traffic in areas of high concentration for bowhead whales (Balaena mysticetus), and traffic in these areas increased four-fold during the study period. Fishing vessels dominate vessel traffic at low ice concentrations, but vessels categorized as Other, likely icebreakers, are the most common vessel type in pack ice. These findings indicate that vessel traffic in areas of ice coverage is influenced by distant policy and resource development decisions which should be taken into consideration when trying to predict future vessel-ice interactions in a changing climate.

     
    more » « less
  5. Abstract

    The Pacific inflow to the Arctic traditionally brings heat in summer, melting sea ice; dense waters in winter, refreshing the Arctic’s cold halocline; and nutrients year‐round, supporting Arctic ecosystems. Bering Strait moorings from 1990 to 2019 find increasing (0.010 ± 0.006 Sv/yr) northward flow, reducing Chukchi residence times by ∼1.5 months over this period (record maximum/minimum ∼7.5 and ∼4.5 months). Annual mean temperatures warm significantly (0.05 ± 0.02°C/yr), with faster change (∼0.1°C/yr) in warming (June/July) and cooling (October/November) months, which are now 2°C to 4°C above climatology. Warm (≥0°C) water duration increased from 5.5 months (the 1990s) to over 7 months (2017), mostly due to earlier warming (1.3 ± 0.7 days/yr). Dramatic winter‐only (January–March) freshening (0.03 psu/yr) makes winter waters fresher than summer waters. The resultant winter density change, too large to be compensated by Chukchi sea‐ice processes, shoals the Pacific Winter Water (PWW) equilibrium depth in the Arctic from 100–150 to 50–100 m, implying PWW no longer ventilates the Arctic’s cold halocline at 33.1 psu.

     
    more » « less