skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Forest Inventory of a Northern Hardwood Forest: Bird Area, 1991 - present, Hubbard Brook Experimental Forest
The forest inventory surveys in the bird area were initiated in 1981 and transects were made permanent in 1991 by Tom Siccama who created and designed this tree survey. The inventory is representative of approximately 2.5 km2 of mid elevation northern hardwood forest. The data set is particularly geared toward producing accurate mortality and recruitment estimates. It consists of a total inventory of all trees greater than or equal to 10 cm dbh within each of four 10 m wide belt transects. The parallel transects are placed approximately 200 m apart and 290° bearing in an east-west direction for 2200 to 2900 m. In 1991, each live stem greater than or equal to 10 cm dbh was tagged with a unique number. Tree vigor is assessed every two years and diameter is remeasured every ten years. Every two years, new tags are placed on stems that have grown into the 10 cm diameter class. A survey of smaller trees (greater than or equal to 2 to less than 10 cm dbh) was first taken in 1991 and is resurveyed every ten years. This dataset includes 1991 and subsequent samplings. Data from an earlier sampling in 1981 can be found in: Sherry, T., D. Holmes, and T. Siccama. 2019. Forest Inventory of a Northern Hardwood Forest: Bird Area at the Hubbard Brook Experimental Forest, 1981 ver 7. Environmental Data Initiative. https://doi.org/10.6073/pasta/206b98f6553f1ff95cf584dd2185554e (Accessed 2021-09-16). These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. These data have been used in the following publication: Siccama, T.G., Fahey, T.J., Johnson, C.E., Sherry, T.W., Denny, E.G., Girdler, E.B., Likens, G.E., and Schwarz, P.A. 2007. Population and biomass dynamics of trees in a northern hardwood forest at Hubbard Brook. Can. J. For. Res. 37(4): 737–749. doi:10.1139/X06-261.  more » « less
Award ID(s):
1637685
NSF-PAR ID:
10395899
Author(s) / Creator(s):
;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The valley-wide plots are a grid of 431 sites along fifteen N–S transects established at 500-m intervals spanning the entire Hubbard Brook Valley. The plot network was designed by Paul Schwarz for spatial analysis of tree species distribution patterns within the valley. Multiple above- and below-ground attributes have been measured on these plots. This dataset includes forest inventory data at 10 year intervals, for 1995, 2005, and 2015. The full survey takes three seasons to complete, with the datatable listing the exact measurement interval for each tree. Data are included for both trees and saplings on 371 core plots (all surveys) and 60 densified plots (1998, 2008). Locations of plots in this study can be found in the following dataset: Hubbard Brook Experimental Forest Valleywide Plots: GIS Shapefile (2022.) https://doi.org/10.6073/pasta/440b176372e0cdeb341731aea816b67c These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. These data have been used in a number of publications including: Schwarz, P.A., Fahey, T.J., Martin, C.W., Siccama, T.G., and Bailey, A. 2001. Structure and composition of three northern hardwood–conifer forests with differing disturbance histories. For. Ecol. Manage. 144(1–3): 201–212. doi:10.1016/S0378-1127(00)00371-6. Schwarz, P.A., Fahey, T.J., and McCulloch, C.E. 2003. Factors controlling spatial variation of tree species abundance in a forested landscape. Ecology, 84(7): 1862–1878. doi:10.1890/0012-9658(2003)084[1862:FCSVOT]2.0.CO;2. van Doorn, N.S., Battles, J.J., Fahey, T.J., Siccama, T.G., and Schwarz, P.A. 2011. Links between biomass and tree demography in a northern hardwood forest: a decade of stability and change in Hubbard Brook Valley, New Hampshire. Can. J. For. Res. 41(7): 1369–1379. doi:10.1139/X11-063. Cleavitt, NL; AB Clyne and TJ Fahey. 2019. Epiphytic macrolichen patterns along an elevation gradient in the White Mountain National Forest, New Hampshire. J. Torrey Bot. Soc. 146(1): 8-17. Cleavitt, NL; Battles, JJ, Fahey, TJ, and Blum, J. 2014. Determinants of survival over seven years for a natural cohort of sugar maple seedlings in a northern hardwood forest. Can. J. For. Res.44 (9): 1112-1121. 
    more » « less
  2. Marked seedlings. Our dataset includes 1463 marked individual oak seedlings in 535 5m2 plots over the 20 transects. Overall, oak seedlings occurred in a third of the searched plots. Most plots had only one seedling (236 plots) and only 3% (16 plots) of the plots had 10 or more seedlings, with a maximum density of 3.4 seedlings m2. Cohort years 2011, 2015, 2017 and 2022 had a greater influx of seedlings, and our oldest seedling is estimated to be 30 years or older. For seedlings where initial height was measured in their year of germination (i.e., in 2011 or later) mean initial seedling height was 14.8 cm (SD = 6.51 cm) and there was a small but significant decline in initial seedling height with time (-0.23 cm/year, F1,1298 = 19.97, p=<0.0001). The size of first year seedlings as measured by both initial height (F1,760 = 25.2, p<0.001) and leaf number (F1,752 = 11.1, p=0.009) increased on average with distance into the valley. The mean distance of oak seedlings into the valley has not increased over the course of the study and remains centered around 800m from the east entrance. Plot environment. Study transects encompassed a full range of topographic positions in the lower valley. Hemlock dominance ranged from absent (5 transects) to dominant (greater than 50% of trees; 3 transects). Tree basal area around the plots ranged from 18.8 – 43.5 m2 ha-1. Light transmission was universally low (all ≤13% TT). Light transmission (F1,5916 = 139.3; r2: 0.157, p<0.0001), hemlock dominance (F1,5916 = 2024; r2: 0.255, p<0.0001), and oak seedling density (F1,5916 = 73.9; r2: 0.126, p<0.0001) all decreased with distance further west into the valley. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  3. Climate models for the northeastern United States (U.S.) over the next century predict an increase in air temperature between 2.8 and 4.3 °C and a decrease in the average number of days per year when a snowpack will cover the forest floor (Hayhoe et al. 2007, 2008; Campbell et al. 2010). Studies of forest dynamics in seasonally snow-covered ecosystems have been primarily conducted during the growing season, when most biological activity occurs. However, in recent years considerable progress has been made in our understanding of how winter climate change influences dynamics in these forests. The snowpack insulates soil from below-freezing air temperatures, which facilitates a significant amount of microbial activity. However, a smaller snowpack and increased depth and duration of soil frost amplify losses of dissolved organic C and NO3- in leachate, as well as N2O released into the atmosphere. The increase in nutrient loss following increased soil frost cannot be explained by changes in microbial activity alone. More likely, it is caused by a decrease in plant nutrient uptake following increases in soil frost. We conducted a snow-removal experiment at Hubbard Brook Experimental Forest to determine the effects of a smaller winter snowpack and greater depth and duration of soil frost on trees, soil microbes, and arthropods. A number of publications have been based on these data: Comerford et al. 2013, Reinmann et al. 2019, Templer 2012, and Templer et al. 2012. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Campbell JL, Ollinger SV, Flerchinger GN, Wicklein H, Hayhoe K, Bailey AS. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA. Hydrological Processes. 2010; 24:2465–2480. Comerford DP, PG Schaberg, PH Templer, AM Socci, JL Campbell, and KF Wallin. 2013. Influence of experimental snow removal on root and canopy physiology of sugar maple trees in a northern hardwood forest. Oecologia 171:261-269. Hayhoe K, Wake CP, Huntington TG, Luo LF, Schwartz MD, Sheffield J, et al. Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dynamics. 2007; 28:381–407. Hayhoe, K., Wake, C., Anderson, B. et al. Regional climate change projections for the Northeast USA. Mitig Adapt Strateg Glob Change 13, 425–436 (2008). https://doi.org/10.1007/s11027-007-9133-2. Reinmann AB, J Susser, EMC Demaria, PH Templer. 2019. Declines in northern forest tree growth following snowpack decline and soil freezing.  Global Change Biology 25:420-430. Templer PH. 2012. Changes in winter climate: soil frost, root injury, and fungal communities (Invited). Plant and Soil 35: 15-17 Templer PH , AF Schiller, NW Fuller, AM Socci, JL Campbell, JE Drake, and TH Kunz. 2012. Impact of a reduced winter snowpack on litter arthropod abundance and diversity in a northern hardwood forest ecosystem. Biology and Fertility of Soils 48:413-424. 
    more » « less
  4. The MELNHE study looks at patterns of resource limitation through nutrient manipulations in three study sites in New Hampshire: Bartlett Experimental Forest, Hubbard Brook Experimental Forest, and Jeffers Brook, located in the White Mountain National Forest. The investigation is monitoring stem diameter, leaf area, sap flow, foliar chemistry, leaf litter production and chemistry, foliar nutrient resorption, root biomass and production, mycorrhizal associations, soil respiration, heterotrophic respiration, N and P availability, N mineralization, soil phosphatase activity, soil carbon and nitrogen, nutrient uptake capacity of roots, and mineral weathering. Applications of N and P began in June 2011 and continue at the rate of 30 kg N/ha/yr (as NH4NO3) and 10 kg P/ha/yr (as NaH2PO4). This dataset was produced using thermal dissipation probes in hardwood trees. We recorded temperature differences between the reference and heated over multiple days in five hardwood species across 5 years. Sites are located in Bartlett Experimental Forest and Hubbard Brook Experimental Forest in NH. The number of trees in each plot and species vary among years. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  5. The Multiple Element Limitation in Northern Hardwood Ecosystems (MELNHE) project studies N and P acquisition and limitation through a series of nutrient manipulations in northern hardwood forests. This data set includes net N mineralization measured in Oe, Oa, and mineral soil horizons in all 13 of the MELNHE study sites. Samples are collected every several years, beginning with pretreatment (2008 and 2009) through 2017, representing 3 years of N and P fertilization. Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=344 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. The following papers describe and make use of these data: Kang H, Fahey TJ, Bae K, Fisk MC, Sherman RE, Yanai RD, See C. 2016. Response of forest soil respiration to nutrient addition depends on site fertility. Biogeochemistry 127:113-124. https://doi.org/10.1007/s10533-015-0172-6. Ratliff TJ, Fisk MC. 2016. Phosphatase activity is related to N availability but not P availability across hardwood forests in the northeastern United States. Soil Biology and Biochemistry 94:61-69. https://doi.org/10.1016/j.soilbio.2015.11.009. Bae B, Fahey TJ, Yanai RD, Fisk MC. 2015. Soil nitrogen availability affects belowground carbon allocation and soil respiration in northern hardwood forests of New Hampshire. Ecosystems 18:1179-1191. https://doi.org/10.1007/s10021-015-9892-7. Fisk MC, Ratliff TJ, Goswami S, Yanai RD. 2014. Synergistic soil response to nitrogen plus phosphorus fertilization in hardwood forests. Biogeochemistry 118:195-204. https://doi.org/10.1007/s10533-013-9918-1. 
    more » « less