skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Broad-line region in NGC 4151 monitored by two decades of reverberation mapping campaigns – I. Evolution of structure and kinematics
ABSTRACT We report the results of long-term reverberation mapping campaigns of the nearby active galactic nuclei (AGNs) NGC 4151, spanning from 1994 to 2022, based on archived observations of the FAST Spectrograph Publicly Archived Programs and our new observations with the 2.3 m telescope at the Wyoming Infrared Observatory. We reduce and calibrate all the spectra in a consistent way, and derive light curves of the broad H β line and 5100 Å continuum. Continuum light curves are also constructed using public archival photometric data to increase sampling cadences. We subtract the host galaxy contamination using Hubble Space Telescope imaging to correct fluxes of the calibrated light curves. Utilizing the long-term archival photometric data, we complete the absolute flux-calibration of the AGN continuum. We find that the H β time delays are correlated with the 5100 Å luminosities as $$\tau _{\rm H\beta }\propto L_{5100}^{0.46\pm 0.16}$$. This is remarkably consistent with Bentz et al. (2013)’s global size–luminosity relationship of AGNs. Moreover, the data sets for five of the seasons allow us to obtain the velocity-resolved delays of the H β line, showing diverse structures (outflows, inflows, and discs). Combining our results with previous independent measurements, we find the measured dynamics of the H β broad-line region (BLR) are possibly related to the long-term trend of the luminosity. There is also a possible additional ∼1.86 yr time lag between the variation in BLR radius and luminosity. These results suggest that dynamical changes in the BLR may be driven by the effects of radiation pressure.  more » « less
Award ID(s):
1852289
PAR ID:
10396037
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
520
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1807-1831
Size(s):
p. 1807-1831
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The broad-line region (BLR) size–luminosity relation has paramount importance for estimating the mass of black holes in active galactic nuclei (AGNs). Traditionally, the size of the HβBLR is often estimated from the optical continuum luminosity at 5100 Å, while the size of the HαBLR and its correlation with the luminosity is much less constrained. As a part of the Seoul National University AGN Monitoring Project, which provides 6 yr photometric and spectroscopic monitoring data, we present our measurements of the Hαlags of high-luminosity AGNs. Combined with the measurements for 42 AGNs from the literature, we derive the size–luminosity relations of the HαBLR against the broad Hαand 5100 Å continuum luminosities. We find the slope of the relations to be 0.61 ± 0.04 and 0.59 ± 0.04, respectively, which are consistent with the Hβsize–luminosity relation. Moreover, we find a linear relation between the 5100 Å continuum luminosity and the broad Hαluminosity across 7 orders of magnitude. Using these results, we propose a new virial mass estimator based on the Hαbroad emission line, finding that the previous mass estimates based on scaling relations in the literature are overestimated by up to 0.7 dex at masses lower than 107M
    more » « less
  2. Abstract We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from 2016 April to 2017 May. Targeting active galactic nuclei (AGNs) with luminosities ofλLλ(5100 Å) ≈ 1044erg s−1and predicted Hβlags of ∼20–30 days or black hole masses of 107–108.5M, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including Hβemission-line light curves, integrated Hβlag times (8–30 days) measured againstV-band continuum light curves, velocity-resolved reverberation lags, line widths of the broad Hβcomponents, and virial black hole mass estimates (107.1–108.1M). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this data set will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample. 
    more » « less
  3. Abstract We perform a systematic survey of active galactic nuclei (AGNs) continuum lags using ∼3 days cadence gri -band light curves from the Zwicky Transient Facility. We select a sample of 94 type 1 AGNs at z < 0.8 with significant and consistent inter-band lags based on the interpolated cross-correlation function method and the Bayesian method JAVELIN . Within the framework of the “lamp-post” reprocessing model, our findings are: (1) The continuum emission (CE) sizes inferred from the data are larger than the disk sizes predicted by the standard thin-disk model. (2) For a subset of the sample, the CE size exceeds the theoretical limit of the self-gravity radius (12 lt-days) for geometrically thin disks. (3) The CE size scales with continuum luminosity as R CE ∝ L 0.48±0.04 with a scatter of 0.2 dex, analogous to the well-known radius–luminosity relation of broad H β . These findings suggest a significant contribution of diffuse continuum emission from the broad-line region (BLR) to AGN continuum lags. We find that the R CE – L relation can be explained by a photoionization model that assumes ∼23% of the total flux comes from the diffuse BLR emission. In addition, the ratio of the CE size and model-predicted disk size anticorrelates with the continuum luminosity, which is indicative of a potential nondisk BLR lag contribution evolving with the luminosity. Finally, a robust positive correlation between the CE size and black hole mass is detected. 
    more » « less
  4. null (Ed.)
    We studied the accretion disc structure in the doubly imaged lensed quasar SDSS J1339+1310 using r -band light curves and UV-visible to near-IR spectra from the first 11 observational seasons after its discovery. The 2009−2019 light curves displayed pronounced microlensing variations on different timescales, and this microlensing signal permitted us to constrain the half-light radius of the 1930 Å continuum-emitting region. Assuming an accretion disc with an axis inclined at 60° to the line of sight, we obtained log( r 1/2 /cm) = 15.4 −0.4 +0.93 . We also estimated the central black hole mass from spectroscopic data. The width of the C  IV , Mg  II , and H β emission lines, and the continuum luminosity at 1350, 3000, and 5100 Å, led to log( M BH / M ⊙ ) = 8.6 ± 0.4. Thus, hot gas responsible for the 1930 Å continuum emission is likely orbiting a 4.0 × 10 8   M ⊙ black hole at an r 1/2 of only a few tens of Schwarzschild radii. 
    more » « less
  5. ABSTRACT Near IR spectroscopic reverberation of Active Galactic Nuclei (AGN) potentially allows the infrared (IR) broad line region (BLR) to be reverberated alongside the disc and dust continua, while the spectra can also reveal details of dust astro-chemistry. Here, we describe results of a short pilot study (17 near-IR spectra over a 183 d period) for Mrk 509. The spectra give a luminosity-weighted dust radius of 〈Rd,lum〉 = 186 ± 4 light-days for blackbody (large grain dust), consistent with previous (photometric) reverberation campaigns, whereas carbon and silicate dust give much larger radii. We develop a method of calibrating spectral data in objects where the narrow lines are extended beyond the slit width. We demonstrate this by showing our resultant photometric band light curves are consistent with previous results, with a hot dust lag at >40 d in the K band, clearly different from the accretion disc response at <20 d in the z band. We place this limit of 40 d by demonstrating clearly that the modest variability that we do detect in the H and K band does not reverberate on time-scales of less than 40 d. We also extract the Pa β line light curve, and find a lag which is consistent with the optical BLR H β line of ∼70–90 d. This is important as direct imaging of the near-IR BLR is now possible in a few objects, so we need to understand its relation to the better studied optical BLR. 
    more » « less