- NSF-PAR ID:
- 10272180
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 646
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A165
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT We present the results of a multiwavelength follow-up campaign for the luminous nuclear transient Gaia16aax, which was first identified in 2016 January. The transient is spatially consistent with the nucleus of an active galaxy at z = 0.25, hosting a black hole of mass ${\sim }6\times 10^8\, \mathrm{M}_\odot$. The nucleus brightened by more than 1 mag in the Gaia G band over a time-scale of less than 1 yr, before fading back to its pre-outburst state over the following 3 yr. The optical spectra of the source show broad Balmer lines similar to the ones present in a pre-outburst spectrum. During the outburst, the H α and H β emission lines develop a secondary peak. We also report on the discovery of two transients with similar light-curve evolution and spectra: Gaia16aka and Gaia16ajq. We consider possible scenarios to explain the observed outbursts. We exclude that the transient event could be caused by a microlensing event, variable dust absorption or a tidal encounter between a neutron star and a stellar mass black hole in the accretion disc. We consider variability in the accretion flow in the inner part of the disc, or a tidal disruption event of a star ${\ge } 1 \, \mathrm{M}_{\odot }$ by a rapidly spinning supermassive black hole as the most plausible scenarios. We note that the similarity between the light curves of the three Gaia transients may be a function of the Gaia alerts selection criteria.more » « less
-
ABSTRACT We predict late-time optical/UV emission from tidal disruption events (TDEs) from our slim accretion disc model (Wen et al. 2020) and explore the impact of the black hole mass M•, black hole spin a•, and accretion disc size. We use these synthetic spectra to successfully fit the multiband Swift observations of ASASSN-14li at >350 d, setting only the host galaxy extinction and outer disc radius as free parameters and employing the M•, a•, disc inclination, and disc accretion rates derived from fitting 10 epochs of ASASSN-14li’s X-ray spectra with the slim disc. To address the nature of the early-time optical/UV emission, we consider two models: shock dissipation and reprocessing. We find that (1) the predicted late-time optical/UV colour (e.g. u − w2) is insensitive to black hole and disc parameters unless the disc spreads quickly; (2) a starburst galaxy extinction model is required to fit the data, consistent with ASASSN-14li’s post-starburst host; (3) surprisingly, the outer disc radius is ≈2 × the tidal radius and ∼constant at late times, showing that viscous spreading is slow or non-existent; (4) the shock model can be self-consistent if M• ≲ 106.75 M⊙, i.e. on the low end of ASASSN-14li’s M• range (106.5–7.1 M⊙; 1σ CL); larger black hole masses require disruption of an unrealistically massive progenitor star; (5) the gas mass needed for reprocessing, whether by a quasi-static or an outflowing layer, can be <0.5 M⊙, consistent with a (plausible) disruption of a solar-mass star.
-
Abstract We present 10 seasons of Sloan Digital Sky Survey
r -band monitoring observations and five seasons ofH -band observations of the two-image system FBQ J0951+2635 from the Kaj Strand Astrometric Reflector at the United States Naval Observatory, Flagstaff Station. We supplement our light curves with six seasons of monitoring data from the literature to yield a 10 + 6 season combined data set, which we analyzed with our Monte Carlo microlensing analysis routine to generate constraints on the structure of this system’s continuum emission source and the properties of the lens galaxy. Complementing our optical light curves with the five-season near-infrared light curves, we ran a joint Monte Carlo analysis to measure the size of the continuum emission region at both wavelengths, yielding log(r 1/2cm−1) = in ther band and in theH band at rest wavelengths of 2744 and 7254 Å, respectively, correcting for an assumed inclination angle of 60°. Modeling the accretion disk temperature profile as a power lawT (r ) ∝r −β , we successfully constrain the slope for FBQ J0951+2635 to , shallower than, but nominally consistent with, the predictions of standard thin-disk theory,β = 0.75. -
ABSTRACT We present fundamental scaling relationships between properties of the optical/UV light curves of tidal disruption events (TDEs) and the mass of the black hole that disrupted the star. We have uncovered these relations from the late-time emission of TDEs. Using a sample of 63 optically selected TDEs, the latest catalogue to date, we observed flattening of the early-time emission into a near-constant late-time plateau for at least two-thirds of our sources. Compared to other properties of the TDE light curves (e.g. peak luminosity or decay rate) the plateau luminosity shows the tightest correlation with the total mass of host galaxy (p-value of 2 × 10−6, with a residual scatter of 0.3 dex). Physically this plateau stems from the presence of an accretion flow. We demonstrate theoretically and numerically that the amplitude of this plateau emission is strongly correlated with black hole mass. By simulating a large population (N = 106) of TDEs, we determine a plateau luminosity-black hole mass scaling relationship well described by $\log _{10} \left({{M_{\bullet }}/M_\odot }\right) = 1.50 \log _{10} \left({ L_{\rm plat}}/10^{43} \, {\rm erg\, s^{-1}}\right) + 9.0$ (here Lplat is measured at 6 × 1014 Hz in the rest frame). The observed plateau luminosities of TDEs and black hole masses in our large sample are in excellent agreement with this simulation. Using the black hole mass predicted from the observed TDE plateau luminosity, we reproduce the well-known scaling relations between black hole mass and galaxy velocity dispersion. The large black hole masses of 10 of the TDEs in our sample allow us to provide constraints on their black hole spins, favouring rapidly rotating black holes. Finally, we also discover two significant correlations between early time properties of optical TDE light curves (the g-band peak luminosity and radiated energy) and the TDEs black hole mass.
-
ABSTRACT We carried out photometric and spectroscopic observations of the well-studied broad-line radio galaxy 3C 120 with the Las Cumbres Observatory (LCO) global robotic telescope network from 2016 December to 2018 April as part of the LCO AGN Key Project on Reverberation Mapping of Accretion Flows. Here, we present both spectroscopic and photometric reverberation mapping results. We used the interpolated cross-correlation function to perform multiple-line lag measurements in 3C 120. We find the H γ, He ii λ4686, H β, and He i λ5876 lags of $\tau _{\text{cen}} = 18.8_{-1.0}^{+1.3}$, $2.7_{-0.8}^{+0.7}$, $21.2_{-1.0}^{+1.6}$, and $16.9_{-1.1}^{+0.9}$ d, respectively, relative to the V-band continuum. Using the measured lag and rms velocity width of the H β emission line, we determine the mass of the black hole for 3C 120 to be $M=(6.3^{+0.5}_{-0.3})\times 10^7\, (f/5.5)$ M⊙. Our black hole mass measurement is consistent with similar previous studies on 3C 120, but with small uncertainties. In addition, velocity-resolved lags in 3C 120 show a symmetric pattern across the H β line, 25 d at line centre decreasing to 17 d in the line wings at ±4000 km s−1. We also investigate the inter-band continuum lags in 3C 120 and find that they are generally consistent with τ ∝ λ4/3 as predicted from a geometrically thin, optically thick accretion disc. From the continuum lags, we measure the best-fitting value τ0 = 3.5 ± 0.2 d at $\lambda _{\rm 0} = 5477\, \mathring{\rm A}$. It implies a disc size a factor of 1.6 times larger than prediction from the standard disc model with L/LEdd = 0.4. This is consistent with previous studies in which larger than expected disc sizes were measured.more » « less