skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metastability of the Potts Ferromagnet on Random Regular Graphs
Abstract We study the performance of Markov chains for theq-state ferromagnetic Potts model on random regular graphs. While the cases of the grid and the complete graph are by now well-understood, the case of random regular graphs has resisted a detailed analysis and, in fact, even analysing the properties of the Potts distribution has remained elusive. It is conjectured that the performance of Markov chains is dictated by metastability phenomena, i.e., the presence of “phases” (clusters) in the sample space where Markov chains with local update rules, such as the Glauber dynamics, are bound to take exponential time to escape, and therefore cause slow mixing. The phases that are believed to drive these metastability phenomena in the case of the Potts model emerge as local, rather than global, maxima of the so-called Bethe functional, and previous approaches of analysing these phases based on optimisation arguments fall short of the task. Our first contribution is to detail the emergence of the two relevant phases for theq-state Potts model on thed-regular random graph for all integers$$q,d\ge 3$$ q , d 3 , and establish that for an interval of temperatures, delineated by the uniqueness and a broadcasting threshold on thed-regular tree, the two phases coexist (as possible metastable states). The proofs are based on a conceptual connection between spatial properties and the structure of the Potts distribution on the random regular graph, rather than complicated moment calculations. This significantly refines earlier results by Helmuth, Jenssen, and Perkins who had established phase coexistence for a small interval around the so-called ordered-disordered threshold (via different arguments) that applied for largeqand$$d\ge 5$$ d 5 . Based on our new structural understanding of the model, our second contribution is to obtain metastability results for two classical Markov chains for the Potts model. We first complement recent fast mixing results for Glauber dynamics by Blanca and Gheissari below the uniqueness threshold, by showing an exponential lower bound on the mixing time above the uniqueness threshold. Then, we obtain tight results even for the non-local and more elaborate Swendsen–Wang chain, where we establish slow mixing/metastability for the whole interval of temperatures where the chain is conjectured to mix slowly on the random regular graph. The key is to bound the conductance of the chains using a random graph “planting” argument combined with delicate bounds on random-graph percolation.  more » « less
Award ID(s):
2007287
PAR ID:
10396273
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Communications in Mathematical Physics
Volume:
401
Issue:
1
ISSN:
0010-3616
Format(s):
Medium: X Size: p. 185-225
Size(s):
p. 185-225
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let$$\mathbb {F}_q^d$$ F q d be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ E F q d and a fixed nonzero$$t\in \mathbb {F}_q$$ t F q , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ H t ( E ) = { h y : y E } , where$$h_y:E\rightarrow \{0,1\}$$ h y : E { 0 , 1 } is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ { x E : x · y = t } . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ d = 3 that if$$|E|\ge Cq^{\frac{11}{4}}$$ | E | C q 11 4 andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) isdwhenever$$E\subseteq \mathbb {F}_q^d$$ E F q d with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ | E | C d q d - 1 d - 1
    more » « less
  2. Abstract Consider two half-spaces$$H_1^+$$ H 1 + and$$H_2^+$$ H 2 + in$${\mathbb {R}}^{d+1}$$ R d + 1 whose bounding hyperplanes$$H_1$$ H 1 and$$H_2$$ H 2 are orthogonal and pass through the origin. The intersection$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$ S 2 , + d : = S d H 1 + H 2 + is a spherical convex subset of thed-dimensional unit sphere$${\mathbb {S}}^d$$ S d , which contains a great subsphere of dimension$$d-2$$ d - 2 and is called a spherical wedge. Choosenindependent random points uniformly at random on$${\mathbb {S}}_{2,+}^d$$ S 2 , + d and consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$$\log n$$ log n . A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$${\mathbb {S}}_{2,+}^d$$ S 2 , + d . The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a half-sphere. 
    more » « less
  3. Abstract We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding quantities in general critical planar random-cluster models with cluster-weight$${q \in [1,4)}$$ q [ 1 , 4 ) . Thus far, proofs for convergence, including ours, rely on discrete complex analysis techniques and are beyond reach for other values ofqthan the FK-Ising model ($$q=2$$ q = 2 ). Given the convergence of interfaces, the conjectural formulas for other values ofqcould be verified similarly with relatively minor technical work. The limit interfaces are variants of$$\text {SLE}_\kappa $$ SLE κ curves (with$$\kappa = 16/3$$ κ = 16 / 3 for$$q=2$$ q = 2 ). Their partition functions, that give the connection probabilities, also satisfy properties predicted for correlation functions in conformal field theory (CFT), expected to describe scaling limits of critical random-cluster models. We verify these properties for all$$q \in [1,4)$$ q [ 1 , 4 ) , thus providing further evidence of the expected CFT description of these models. 
    more » « less
  4. Abstract Datta and Johnsen (Des Codes Cryptogr 91:747–761, 2023) introduced a new family of evaluation codes in an affine space of dimension$$\ge 2$$ 2 over a finite field$${\mathbb {F}}_q$$ F q where linear combinations of elementary symmetric polynomials are evaluated on the set of all points with pairwise distinct coordinates. In this paper, we propose a generalization by taking low dimensional linear systems of symmetric polynomials. Computation for small values of$$q=7,9$$ q = 7 , 9 shows that carefully chosen generalized Datta–Johnsen codes$$\left[ \frac{1}{2}q(q-1),3,d\right] $$ 1 2 q ( q - 1 ) , 3 , d have minimum distancedequal to the optimal value minus 1. 
    more » « less
  5. Abstract We consider integral area-minimizing 2-dimensional currents$$T$$ T in$$U\subset \mathbf {R}^{2+n}$$ U R 2 + n with$$\partial T = Q\left [\!\![{\Gamma }\right ]\!\!]$$ T = Q Γ , where$$Q\in \mathbf {N} \setminus \{0\}$$ Q N { 0 } and$$\Gamma $$ Γ is sufficiently smooth. We prove that, if$$q\in \Gamma $$ q Γ is a point where the density of$$T$$ T is strictly below$$\frac{Q+1}{2}$$ Q + 1 2 , then the current is regular at$$q$$ q . The regularity is understood in the following sense: there is a neighborhood of$$q$$ q in which$$T$$ T consists of a finite number of regular minimal submanifolds meeting transversally at$$\Gamma $$ Γ (and counted with the appropriate integer multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical theorem of Allard for$$Q=1$$ Q = 1 . As a corollary, if$$\Omega \subset \mathbf {R}^{2+n}$$ Ω R 2 + n is a bounded uniformly convex set and$$\Gamma \subset \partial \Omega $$ Γ Ω a smooth 1-dimensional closed submanifold, then any area-minimizing current$$T$$ T with$$\partial T = Q \left [\!\![{\Gamma }\right ]\!\!]$$ T = Q Γ is regular in a neighborhood of $$\Gamma $$ Γ
    more » « less