skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spherical convex hull of random points on a wedge
Abstract Consider two half-spaces$$H_1^+$$ H 1 + and$$H_2^+$$ H 2 + in$${\mathbb {R}}^{d+1}$$ R d + 1 whose bounding hyperplanes$$H_1$$ H 1 and$$H_2$$ H 2 are orthogonal and pass through the origin. The intersection$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$ S 2 , + d : = S d H 1 + H 2 + is a spherical convex subset of thed-dimensional unit sphere$${\mathbb {S}}^d$$ S d , which contains a great subsphere of dimension$$d-2$$ d - 2 and is called a spherical wedge. Choosenindependent random points uniformly at random on$${\mathbb {S}}_{2,+}^d$$ S 2 , + d and consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$$\log n$$ log n . A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$${\mathbb {S}}_{2,+}^d$$ S 2 , + d . The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a half-sphere.  more » « less
Award ID(s):
2103482
PAR ID:
10446945
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Mathematische Annalen
Volume:
389
Issue:
3
ISSN:
0025-5831
Format(s):
Medium: X Size: p. 2289-2316
Size(s):
p. 2289-2316
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let$$\mathbb {F}_q^d$$ F q d be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ E F q d and a fixed nonzero$$t\in \mathbb {F}_q$$ t F q , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ H t ( E ) = { h y : y E } , where$$h_y:E\rightarrow \{0,1\}$$ h y : E { 0 , 1 } is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ { x E : x · y = t } . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ d = 3 that if$$|E|\ge Cq^{\frac{11}{4}}$$ | E | C q 11 4 andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) isdwhenever$$E\subseteq \mathbb {F}_q^d$$ E F q d with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ | E | C d q d - 1 d - 1
    more » « less
  2. Abstract In this paper we prove a higher dimensional analogue of Carleson’s$$\varepsilon ^{2}$$ ε 2 conjecture. Given two arbitrary disjoint Borel sets$$\Omega ^{+},\Omega ^{-}\subset \mathbb{R}^{n+1}$$ Ω + , Ω R n + 1 , and$$x\in \mathbb{R}^{n+1}$$ x R n + 1 ,$$r>0$$ r > 0 , we denote$$ \varepsilon _{n}(x,r) := \frac{1}{r^{n}}\, \inf _{H^{+}} \mathcal{H}^{n} \left ( ((\partial B(x,r)\cap H^{+}) \setminus \Omega ^{+}) \cup (( \partial B(x,r)\cap H^{-}) \setminus \Omega ^{-})\right ), $$ ε n ( x , r ) : = 1 r n inf H + H n ( ( ( B ( x , r ) H + ) Ω + ) ( ( B ( x , r ) H ) Ω ) ) , where the infimum is taken over all open affine half-spaces$$H^{+}$$ H + such that$$x \in \partial H^{+}$$ x H + and we define$$H^{-}= \mathbb{R}^{n+1} \setminus \overline{H^{+}}$$ H = R n + 1 H + . Our first main result asserts that the set of points$$x\in \mathbb{R}^{n+1}$$ x R n + 1 where$$ \int _{0}^{1} \varepsilon _{n}(x,r)^{2} \, \frac{dr}{r}< \infty $$ 0 1 ε n ( x , r ) 2 d r r < is$$n$$ n -rectifiable. For our second main result we assume that$$\Omega ^{+}$$ Ω + ,$$\Omega ^{-}$$ Ω are open and that$$\Omega ^{+}\cup \Omega ^{-}$$ Ω + Ω satisfies the capacity density condition. For each$$x \in \partial \Omega ^{+} \cup \partial \Omega ^{-}$$ x Ω + Ω and$$r>0$$ r > 0 , we denote by$$\alpha ^{\pm }(x,r)$$ α ± ( x , r ) the characteristic constant of the (spherical) open sets$$\Omega ^{\pm }\cap \partial B(x,r)$$ Ω ± B ( x , r ) . We show that, up to a set of$$\mathcal{H}^{n}$$ H n measure zero,$$x$$ x is a tangent point for both$$\partial \Omega ^{+}$$ Ω + and$$\partial \Omega ^{-}$$ Ω if and only if$$ \int _{0}^{1} \min (1,\alpha ^{+}(x,r) + \alpha ^{-}(x,r) -2) \frac{dr}{r} < \infty . $$ 0 1 min ( 1 , α + ( x , r ) + α ( x , r ) 2 ) d r r < . The first result is new even in the plane and the second one improves and extends to higher dimensions the$$\varepsilon ^{2}$$ ε 2 conjecture of Carleson. 
    more » « less
  3. Abstract We study holomorphic mapsFfrom a smooth Levi non-degenerate real hypersurface$$ M_{\ell }\subset {\mathbb {C}}^n $$ M C n into a hyperquadric$$ {\mathbb {H}}_{\ell '}^N $$ H N with signatures$$ \ell \le (n-1)/2 $$ ( n - 1 ) / 2 and$$ \ell '\le (N-1)/2,$$ ( N - 1 ) / 2 , respectively. Assuming that$$ N - n < n - 1,$$ N - n < n - 1 , we prove that if$$ \ell = \ell ',$$ = , thenFis either CR transversal to$$ {\mathbb {H}}_{\ell }^N $$ H N at every point of$$ M_{\ell },$$ M , or it maps a neighborhood of$$ M_{\ell } $$ M in$$ {\mathbb {C}}^n $$ C n into$$ {\mathbb {H}}_{\ell }^N.$$ H N . Furthermore, in the case where$$ \ell ' > \ell ,$$ > , we show that ifFis not CR transversal at$$0\in M_\ell ,$$ 0 M , then it must be transversally flat. The latter is best possible. 
    more » « less
  4. Abstract We investigate the low moments$$\mathbb {E}[|A_N|^{2q}],\, 0 E [ | A N | 2 q ] , 0 < q 1 of secular coefficients$$A_N$$ A N of the critical non-Gaussian holomorphic multiplicative chaos, i.e. coefficients of$$z^N$$ z N in the power series expansion of$$\exp (\sum _{k=1}^\infty X_kz^k/\sqrt{k})$$ exp ( k = 1 X k z k / k ) , where$$\{X_k\}_{k\geqslant 1}$$ { X k } k 1 are i.i.d. rotationally invariant unit variance complex random variables. Inspired by Harper’s remarkable result on random multiplicative functions, Soundararajan and Zaman recently showed that if each$$X_k$$ X k is standard complex Gaussian,$$A_N$$ A N features better-than-square-root cancellation:$$\mathbb {E}[|A_N|^2]=1$$ E [ | A N | 2 ] = 1 and$$\mathbb {E}[|A_N|^{2q}]\asymp (\log N)^{-q/2}$$ E [ | A N | 2 q ] ( log N ) - q / 2 for fixed$$q\in (0,1)$$ q ( 0 , 1 ) as$$N\rightarrow \infty $$ N . We show that this asymptotics holds universally if$$\mathbb {E}[e^{\gamma |X_k|}]<\infty $$ E [ e γ | X k | ] < for some$$\gamma >2q$$ γ > 2 q . As a consequence, we establish the universality for the tightness of the normalized secular coefficients$$A_N(\log (1+N))^{1/4}$$ A N ( log ( 1 + N ) ) 1 / 4 , generalizing a result of Najnudel, Paquette, and Simm. Another corollary is the almost sure regularity of some critical non-Gaussian holomorphic chaos in appropriate Sobolev spaces. Moreover, we characterize the asymptotics of$$\mathbb {E}[|A_N|^{2q}]$$ E [ | A N | 2 q ] for$$|X_k|$$ | X k | following a stretched exponential distribution with an arbitrary scale parameter, which exhibits a completely different behavior and underlying mechanism from the Gaussian universality regime. As a result, we unveil a double-layer phase transition around the critical case of exponential tails. Our proofs combine Harper’s robust approach with a careful analysis of the (possibly random) leading terms in the monomial decomposition of$$A_N$$ A N
    more » « less
  5. Abstract Let$$(h_I)$$ ( h I ) denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ I D , the set of dyadic intervals and$$h_I\otimes h_J$$ h I h J denote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$ ( s , t ) h I ( s ) h J ( t ) ,$$I,J\in \mathcal {D}$$ I , J D . We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$ V ( δ 2 ) of$$h_I\otimes h_J$$ h I h J ,$$I,J\in \mathcal {D}$$ I , J D . This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$ L p [ 0 , 1 ] or the Hardy spaces$$H^p[0,1]$$ H p [ 0 , 1 ] ,$$1\le p < \infty $$ 1 p < . We say that$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$ D ( h I h J ) = d I , J h I h J , where$$d_{I,J}\in \mathbb {R}$$ d I , J R , and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$ C : V ( δ 2 ) V ( δ 2 ) given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ C h I h J = h I h J if$$|I|\le |J|$$ | I | | J | , and$$\mathcal {C} h_I\otimes h_J = 0$$ C h I h J = 0 if$$|I| > |J|$$ | I | > | J | , as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) , there exist$$\lambda ,\mu \in \mathbb {R}$$ λ , μ R such that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$ λ C + μ ( Id - C ) approximately 1-projectionally factors through D , i.e., for all$$\eta > 0$$ η > 0 , there exist bounded operatorsA, Bso thatABis the identity operator$${{\,\textrm{Id}\,}}$$ Id ,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$ A · B = 1 and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$ λ C + μ ( Id - C ) - A D B < η . Additionally, if$$\mathcal {C}$$ C is unbounded onX(Y), then$$\lambda = \mu $$ λ = μ and then$${{\,\textrm{Id}\,}}$$ Id either factors throughDor$${{\,\textrm{Id}\,}}-D$$ Id - D
    more » « less