skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatial and seasonal variability of horizontal temperature fronts in the Mozambique Channel for both epipelagic and mesopelagic realms
Introduction Ocean fronts are moving ephemeral biological hotspots forming at the interface of cooler and warmer waters. In the open ocean, this is where marine organisms, ranging from plankton to mesopelagic fish up to megafauna, gather and where most fishing activities concentrate. Fronts are critical ecosystems so that understanding their spatio-temporal variability is essential not only for conservation goals but also to ensure sustainable fisheries. The Mozambique Channel (MC) is an ideal laboratory to study ocean front variability due to its energetic flow at sub-to-mesoscales, its high biodiversity and the currently debated conservation initiatives. Meanwhile, fronts detection relying solely on remotely-sensed Sea Surface Temperature (SST) cannot access aspects of the subsurface frontal activity that may be relevant for understanding ecosystem dynamics. Method In this study, we used the Belkin and O’Reilly Algorithm on remotely-sensed SST and hindcasts of a high-resolution nested ocean model to investigate the spatial and seasonal variability of temperature fronts at different depths in the MC. Results We find that the seasonally varying spatial patterns of frontal activity can be interpreted as resulting from main features of the mean circulation in the MC region. In particular, horizontally, temperature fronts are intense and frequent along continental shelves, in islands’ wakes, at the edge of eddies, and in the pathways of both North-East Madagascar Current (NEMC) and South-East Madagascar Current (SEMC). In austral summer, thermal fronts in the MC are mainly associated with the Angoche upwelling and seasonal variability of the Mozambique current. In austral winter, thermal fronts in the MC are more intense when the NEMC and the Seychelles-Chagos and South Madagascar upwelling cells intensify. Vertically, the intensity of temperature fronts peaks in the vicinity of the mean thermocline. Discussion Considering the marked seasonality of frontal activity evidenced here and the dynamical connections of the MC circulation with equatorial variability, our study calls for addressing longer timescales of variability to investigate how ocean ecosystem/front interactions will evolve with climate change.  more » « less
Award ID(s):
2029710
PAR ID:
10396349
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
9
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Eddy heat flux plays a fundamental role in the Southern Ocean meridional overturning circulation, providing the only mechanism for poleward heat transport above the topography and below the Ekman layer at the latitudes of Drake Passage. Models and observations identify Drake Passage as one of a handful of hot spots in the Southern Ocean where eddy heat transport across the Antarctic Circumpolar Current (ACC) is enhanced. Quantifying this transport, however, together with its spatial distribution and temporal variability, remains an open question. This study quantifies eddy heat flux as a function of ACC streamlines using a unique 20-yr time series of upper-ocean temperature and velocity transects with unprecedented horizontal resolution. Eddy heat flux is calculated using both time-mean and time-varying streamlines to isolate the dynamically important across-ACC heat flux component. The time-varying streamlines provide the best estimate of the across-ACC component because they track the shifting and meandering of the ACC fronts. The depth-integrated (0–900 m) across-stream eddy heat flux is maximum poleward in the south flank of the Subantarctic Front (−0.10 ± 0.05 GW m −1 ) and decreases toward the south, becoming statistically insignificant in the Polar Front, indicating heat convergence south of the Subantarctic Front. The time series provides an uncommon opportunity to explore the seasonal cycle of eddy heat flux. Poleward eddy heat flux in the Polar Front Zone is enhanced during austral autumn–winter, suggesting a seasonal variation in eddy-driven upwelling and thus the meridional overturning circulation. 
    more » « less
  2. Abstract Fronts are ubiquitous discrete features of the global ocean often associated with enhanced vertical velocities, in turn boosting primary production. Fronts thus form dynamical and ephemeral ecosystems where numerous species meet across all trophic levels. Fronts are also targeted by fisheries. Capturing ocean fronts and studying their long-term variability in relation with climate change is thus key for marine resource management and spatial planning. The Mediterranean Sea and the Southwest Indian Ocean are natural laboratories to study front-marine life interactions due to their energetic flow at sub-to-mesoscales, high biodiversity (including endemic and endangered species) and numerous conservation initiatives. Based on remotely-sensed Sea Surface Temperature and Height, we compute thermal fronts (2003–2020) and attracting Lagrangian coherent structures (1994–2020), in both regions over several decades. We advocate for the combined use of both thermal fronts and attracting Lagrangian coherent structures to study front-marine life interactions. The resulting front dataset differs from other alternatives by its high spatio-temporal resolution, long time coverage, and relevant thresholds defined for ecological provinces. 
    more » « less
  3. Abstract. The Indian Ocean presents two distinct climate regimes. The north Indian Ocean is dominated by the monsoons, whereas the seasonal reversal is less pronounced in the south. The prevailing wind pattern produces upwelling along different parts of the coast in both hemispheres during different times of the year. Additionally, dynamical processes and eddies either cause or enhance upwelling. This paper reviews the phenomena of upwelling along the coast of the Indian Ocean extending from the tip of South Africa to the southern tip of the west coast of Australia. Observed features, underlying mechanisms, and the impact of upwelling on the ecosystem are presented. In the Agulhas Current region, cyclonic eddies associated with Natal pulses drive slope upwelling and enhance chlorophyll concentrations along the continental margin. The Durban break-away eddy spun up by the Agulhas upwells cold nutrient-rich water. Additionally, topographically induced upwelling occurs along the inshore edges of the Agulhas Current. Wind-driven coastal upwelling occurs along the south coast of Africa and augments the dynamical upwelling in the Agulhas Current. Upwelling hotspots along the Mozambique coast are present in the northern and southern sectors of the channel and are ascribed to dynamical effects of ocean circulation in addition to wind forcing. Interaction of mesoscale eddies with the western boundary, dipole eddy pair interactions, and passage of cyclonic eddies cause upwelling. Upwelling along the southern coast of Madagascar is caused by the Ekman wind-driven mechanism and by eddy generation and is inhibited by the Southwest Madagascar Coastal Current. Seasonal upwelling along the East African coast is primarily driven by the northeast monsoon winds and enhanced by topographically induced shelf breaking and shear instability between the East African Coastal Current and the island chains. The Somali coast presents a strong case for the classical Ekman type of upwelling; such upwelling can be inhibited by the arrival of deeper thermocline signals generated in the offshore region by wind stress curl. Upwelling is nearly uniform along the coast of Arabia, caused by the alongshore component of the summer monsoon winds and modulated by the arrival of Rossby waves generated in the offshore region by cyclonic wind stress curl. Along the west coast of India, upwelling is driven by coastally trapped waves together with the alongshore component of the monsoon winds. Along the southern tip of India and Sri Lanka, the strong Ekman transport drives upwelling. Upwelling along the east coast of India is weak and occurs during summer, caused by alongshore winds. In addition, mesoscale eddies lead to upwelling, but the arrival of river water plumes inhibits upwelling along this coast. Southeasterly winds drive upwelling along the coast of Sumatra and Java during summer, with Kelvin wave propagation originating from the equatorial Indian Ocean affecting the magnitude and extent of the upwelling. Both El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events cause large variability in upwelling here. Along the west coast of Australia, which is characterized by the anomalous Leeuwin Current, southerly winds can cause sporadic upwelling, which is prominent along the southwest, central, and Gascoyne coasts during summer. Open-ocean upwelling in the southern tropical Indian Ocean and within the Sri Lanka Dome is driven primarily by the wind stress curl but is also impacted by Rossby wave propagations. Upwelling is a key driver enhancing biological productivity in all sectors of the coast, as indicated by enhanced sea surface chlorophyll concentrations. Additional knowledge at varying levels has been gained through in situ observations and model simulations. In the Mozambique Channel, upwelling simulates new production and circulation redistributes the production generated by upwelling and mesoscale eddies, leading to observations of higher ecosystem impacts along the edges of eddies. Similarly, along the southern Madagascar coast, biological connectivity is influenced by the transport of phytoplankton from upwelling zones. Along the coast of Kenya, both productivity rates and zooplankton biomass are higher during the upwelling season. Along the Somali coast, accumulation of upwelled nutrients in the northern part of the coast leads to spatial heterogeneity in productivity. In contrast, productivity is more uniform along the coasts of Yemen and Oman. Upwelling along the west coast of India has several biogeochemical implications, including oxygen depletion, denitrification, and high production of CH4 and dimethyl sulfide. Although weak, wind-driven upwelling leads to significant enhancement of phytoplankton in the northwest Bay of Bengal during the summer monsoon. Along the Sumatra and Java coasts, upwelling affects the phytoplankton composition and assemblages. Dissimilarities in copepod assemblages occur during the upwelling periods along the west coast of Australia. Phytoplankton abundance characterizes inshore edges of the slope during upwelling season, and upwelling eddies are associated with krill abundance. The review identifies the northern coast of the Arabian Sea and eastern coasts of the Bay of Bengal as the least observed sectors. Additionally, sustained long-term observations with high temporal and spatial resolutions along with high-resolution modelling efforts are recommended for a deeper understanding of upwelling, its variability, and its impact on the ecosystem. 
    more » « less
  4. Abstract The Oyashio Extension (OE) frontal zone in the northwest Pacific Ocean is associated with strong gradients of sea surface temperature (SST) and salinity. The OE front enhances baroclinicity and anchors the storm tracks; changes in its position and strength may impact atmospheric variability. North–south shifts in the OE front are often defined using the leading principal component for the latitude of the absolute maximum SST gradient in the northwest Pacific (145°–170°E), the so-called Oyashio Extension index (OEI). We show that the OEI is sensitive to the choice of SST dataset used in its construction, and that the significance of regressions of atmospheric fields onto the OEI also depends on the choice of SST datasets, leading to nonrobust results. This sensitivity primarily stems from the longitudinal domain used to define the OEI including a region with parallel or indistinct frontal zones in its central section (155°–164°E), leading to divergent results across datasets. We introduce a new index that considers the extent to which the SST front across this central section departs from climatology, the frontal disturbance index (FDI). For the months considered and over short time lags, the FDI produces more consistent results on air–sea interactions and associated high-frequency storm-track metrics than the conventional OEI, with a southward shift of the storm track for a more positive FDI. The FDI appears to be related to oceanic mesoscale eddy activity in the central OE region. There are significant asymmetric associations between the FDI and storm-track metrics dependent on the sign of the FDI. Significance StatementIn this study, we aim to understand how the choice of dataset may influence the interpretation of interactions between the ocean and the overlying atmosphere near sea surface temperature (SST) fronts. We find that using different SST datasets affects the results, due to slight differences in the representation of the location of the maximum SST gradient. To understand this, we develop a new index which relates to the degree of disturbance of the SST front. The new index produces regression results that are more consistent across the different datasets. We also identify some possible links between the frontal disturbance and the presence of ocean eddies. We advise that the sensitivity to dataset choice is given due consideration in regions near SST fronts. 
    more » « less
  5. Abstract Two decades of high-resolution satellite observations and climate modeling studies have indicated strong ocean–atmosphere coupled feedback mediated by ocean mesoscale processes, including semipermanent and meandrous SST fronts, mesoscale eddies, and filaments. The air–sea exchanges in latent heat, sensible heat, momentum, and carbon dioxide associated with this so-called mesoscale air–sea interaction are robust near the major western boundary currents, Southern Ocean fronts, and equatorial and coastal upwelling zones, but they are also ubiquitous over the global oceans wherever ocean mesoscale processes are active. Current theories, informed by rapidly advancing observational and modeling capabilities, have established the importance of mesoscale and frontal-scale air–sea interaction processes for understanding large-scale ocean circulation, biogeochemistry, and weather and climate variability. However, numerous challenges remain to accurately diagnose, observe, and simulate mesoscale air–sea interaction to quantify its impacts on large-scale processes. This article provides a comprehensive review of key aspects pertinent to mesoscale air–sea interaction, synthesizes current understanding with remaining gaps and uncertainties, and provides recommendations on theoretical, observational, and modeling strategies for future air–sea interaction research. Significance StatementRecent high-resolution satellite observations and climate models have shown a significant impact of coupled ocean–atmosphere interactions mediated by small-scale (mesoscale) ocean processes, including ocean eddies and fronts, on Earth’s climate. Ocean mesoscale-induced spatial temperature and current variability modulate the air–sea exchanges in heat, momentum, and mass (e.g., gases such as water vapor and carbon dioxide), altering coupled boundary layer processes. Studies suggest that skillful simulations and predictions of ocean circulation, biogeochemistry, and weather events and climate variability depend on accurate representation of the eddy-mediated air–sea interaction. However, numerous challenges remain in accurately diagnosing, observing, and simulating mesoscale air–sea interaction to quantify its large-scale impacts. This article synthesizes the latest understanding of mesoscale air–sea interaction, identifies remaining gaps and uncertainties, and provides recommendations on strategies for future ocean–weather–climate research. 
    more » « less