Algebraic Multigrid (AMG) is an extremely popular linear system solver and/or preconditioner approach for matrices obtained from the discretization of elliptic operators. However, its performance and scalability for large systems obtained from unstructured discretizations seem less consistent than for geometric multigrid (GMG). To a large extent, this is due to loss of sparsity at the coarser grids and the resulting increased cost and poor scalability of the matrix-vector multiplication. While there have been attempts to address this concern by designing sparsification algorithms, these affect the overall convergence. In this work, we focus on designing a specialized matrix-vector multiplication (matvec) that achieves high performance and scalability for a large variation in the levels of sparsity. We evaluate distributed and shared memory implementations of our matvec operator and demonstrate the improvements to its scalability and performance in AMG hierarchy and finally, we compare it with PETSc.
more »
« less
Effective Preconditioners for Mixed‐Dimensional Scalar Elliptic Problems
Abstract Discretization of flow in fractured porous media commonly lead to large systems of linear equations that require dedicated solvers. In this work, we develop an efficient linear solver and its practical implementation for mixed‐dimensional scalar elliptic problems. We design an effective preconditioner based on approximate block factorization and algebraic multigrid techniques. Numerical results on benchmarks with complex fracture structures demonstrate the effectiveness of the proposed linear solver and its robustness with respect to different physical and discretization parameters.
more »
« less
- Award ID(s):
- 2208267
- PAR ID:
- 10396386
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 59
- Issue:
- 1
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Boltzmann Transport equation (BTE) was solved numerically in cylindrical coordinates and in time domain to simulate a Frequency Domain Thermo-Reflectance (FDTR) experiment. First, a parallel phonon BTE solver that accounts for all phonon modes, frequencies, and polarizations was developed and tested. The solver employs the finite-volume method (FVM) for discretization of physical space, and the finite-angle method (FAM) for discretization of angular space. The solution was advanced in time using explicit time marching. The simulations were carried out in time domain and band-based parallelization of the BTE solver was implemented. The phase lag between the temperature averaged over the probed region of the transducer and the modulated laser pump signal was extracted for a pump laser modulation frequency ranging from 20–200 MHz. It was found that with the relaxation time scales used in the present study, the computed phase lag is underpredicted when compared to experimental data, especially at smaller modulation frequencies. The challenges in solving the BTE for such applications are highlighted.more » « less
-
Radial basis functions are typically used when discretization schemes require inhomogeneous node distributions. While spawning from a desire to interpolate functions on a random set of nodes, they have found successful applications in solving many types of differential equations. However, the weights of the interpolated solution, used in the linear superposition of basis functions to interpolate the solution, and the actual value of the solution are completely different. In fact, these weights mix the value of the solution with the geometrical location of the nodes used to discretize the equation. In this paper, we used nodal radial basis functions, which are interpolants of the impulse function at each node inside the domain. This transformation allows to solve a linear hyperbolic partial differential equation using series expansion rather than the explicit computation of a matrix inverse. This transformation effectively yields an implicit solver which only requires the multiplication of vectors with matrices. Because the solver requires neither matrix inverse nor matrix-matrix products, this approach is numerically more stable and reduces the error by at least two orders of magnitude, compared to solvers using radial basis functions directly. Further, boundary conditions are integrated directly inside the solver, at no extra cost. The method is locally conservative, keeping the error virtually constant throughout the computation.more » « less
-
Bruno, Oscar; Pandey, Ambuj (Ed.)This paper presents a fast high-order method for the solution of two-dimensional problems of scattering by penetrable inhomogeneous media, with application to high-frequency configurations containing (possibly) discontinuous refractivities. The method relies on a hybrid direct/iterative combination of 1)~A differential volumetric formulation (which is based on the use of appropriate Chebyshev differentiation matrices enacting the Laplace operator) and, 2)~A second-kind boundary integral formulation (which, once again, utilizes Chebyshev discretization, but, in this case, in the boundary-integral context). The approach enjoys low dispersion and high-order accuracy for smooth refractivities, as well as second-order accuracy (while maintaining low dispersion) in the discontinuous refractivity case. The solution approach proceeds by application of Impedance-to-Impedance (ItI) maps to couple the volumetric and boundary discretizations. The volumetric linear algebra solutions are obtained by means of a multifrontal solver, and the coupling with the boundary integral formulation is achieved via an application of the iterative linear-algebra solver GMRES. In particular, the existence and uniqueness theory presented in the present paper provides an affirmative answer to an open question concerning the existence of a uniquely solvable second-kind ItI-based formulation for the overall scattering problem under consideration. Relying on a modestly-demanding scatterer-dependent precomputation stage (requiring in practice a computing cost of the order of $$O(N^{\alpha})$$ operations, with $$\alpha \approx 1.07$$, for an $$N$$-point discretization \textcolor{black}{and for the relevant Chebyshev accuracy orders $$q$$ used)}, together with fast ($O(N)$-cost) single-core runs for each incident field considered, the proposed algorithm can effectively solve scattering problems for large and complex objects possibly containing discontinuities and strong refractivity contrasts.more » « less
-
Diffusion models (DMs) create samples from a data distribution by starting from random noise and iteratively solving a reverse-time ordinary differential equation (ODE). Because each step in the iterative solution requires an expensive neural function evaluation (NFE), there has been significant interest in approximately solving these diffusion ODEs with only a few NFEs without modifying the underlying model. However, in the few NFE regime, we observe that tracking the true ODE evolution is fundamentally impossible using traditional ODE solvers. In this work, we propose a new method that learns a good solver for the DM, which we call Solving for the Solver (S4S). S4S directly optimizes a solver to obtain good generation quality by learning to match the output of a strong teacher solver. We evaluate S4S on six different pre-trained DMs, including pixel-space and latent-space DMs for both conditional and unconditional sampling. In all settings, S4S uniformly improves the sample quality relative to traditional ODE solvers. Moreover, our method is lightweight, data-free, and can be plugged in black-box on top of any discretization schedule or architecture to improve performance. Building on top of this, we also propose S4S-Alt, which optimizes both the solver and the discretization schedule. By exploiting the full design space of DM solvers, with 5 NFEs, we achieve an FID of 3.73 on CIFAR10 and 13.26 on MS-COCO, representing a 1.5× improvement over previous training-free ODE methods.more » « less
An official website of the United States government
