skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct/Iterative Hybrid Solver for Scattering by Inhomogeneous Media
This paper presents a fast high-order method for the solution of two-dimensional problems of scattering by penetrable inhomogeneous media, with application to high-frequency configurations containing (possibly) discontinuous refractivities. The method relies on a hybrid direct/iterative combination of 1)~A differential volumetric formulation (which is based on the use of appropriate Chebyshev differentiation matrices enacting the Laplace operator) and, 2)~A second-kind boundary integral formulation (which, once again, utilizes Chebyshev discretization, but, in this case, in the boundary-integral context). The approach enjoys low dispersion and high-order accuracy for smooth refractivities, as well as second-order accuracy (while maintaining low dispersion) in the discontinuous refractivity case. The solution approach proceeds by application of Impedance-to-Impedance (ItI) maps to couple the volumetric and boundary discretizations. The volumetric linear algebra solutions are obtained by means of a multifrontal solver, and the coupling with the boundary integral formulation is achieved via an application of the iterative linear-algebra solver GMRES. In particular, the existence and uniqueness theory presented in the present paper provides an affirmative answer to an open question concerning the existence of a uniquely solvable second-kind ItI-based formulation for the overall scattering problem under consideration. Relying on a modestly-demanding scatterer-dependent precomputation stage (requiring in practice a computing cost of the order of $$O(N^{\alpha})$$ operations, with $$\alpha \approx 1.07$$, for an $$N$$-point discretization \textcolor{black}{and for the relevant Chebyshev accuracy orders $$q$$ used)}, together with fast ($O(N)$-cost) single-core runs for each incident field considered, the proposed algorithm can effectively solve scattering problems for large and complex objects possibly containing discontinuities and strong refractivity contrasts.  more » « less
Award ID(s):
2109831
PAR ID:
10590727
Author(s) / Creator(s):
;
Editor(s):
Bruno, Oscar; Pandey, Ambuj
Publisher / Repository:
Siam Journal on Scientific Computing
Date Published:
Journal Name:
SIAM Journal on Scientific Computing
Edition / Version:
1
Volume:
46
Issue:
2
ISSN:
1064-8275
Page Range / eLocation ID:
A1298 to A1326
Subject(s) / Keyword(s):
scattering, inhomogeneous media, direct solver, iterative solver, spectral method, integral equations
Format(s):
Medium: X Size: 7.31 MB Other: pdf
Size(s):
7.31 MB
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper introduces an efficient approach for solving the Electric Field Integral Equation (EFIE) with highorder accuracy by explicitly enforcing the continuity of the impressed current densities across boundaries of the surface patch discretization. The integral operator involved is discretized via a Nystrom-collocation approach based on Chebyshev polynomial expansion within each patch and a closed quadrature rule is utilized such that the discretization points inside one patch coincide with those inside another patch on the shared boundary of those two patches. The continuity enforcement is achieved by constructing a mapping from those coninciding points to a vector containing unique discretization points used in the GMRES iterative solver. The proposed approach is applied to the scattering of several different geometries including a sphere, a cube, a NURBS model imported from CAD software, and a dipole structure and results are compared with the Magnetic Field Integral Equation (MFIE) and the EFIE without enforcing continuity to illustrate the effectiveness of the approach. 
    more » « less
  2. Boundary element methods (BEM) have been successfully applied towards solving a broad array of complicated electromagnetic problems. Most BEM approaches rely on flat triangular discretizations and discretization via the Method of Moments (MoM) and low-order basis functions. Although more complicated from an implementation standpoint, it has been shown that high-order methods based on curvilinear patch mesh discretizations can significantly outperform low-order MoM in both accuracy and computational efficiency. In this work, we review a new high-order Nyström method based on using Chebyshev basis functions with curvilinear elements that we have recently developed, present a few scattering examples, and discuss related on-going and future work. 
    more » « less
  3. null (Ed.)
    In this paper, we construct, analyze, and numerically validate conservative discontinuous Galerkin (DG) schemes for approximating the Schr\"{o}dinger-Poisson equation. The proposed schemes all satisfy both mass and energy conservation. For the semi-discrete DG scheme optimal $L^2$ error estimates are obtained. Efficient iterative solvers are also constructed to solve the second order implicit time discretization. A number of numerical tests are presented to demonstrate the method’s accuracy and robustness, confirming that both mass and energy are well preserved over long time simulations. 
    more » « less
  4. Abstract We present new methodologies for the numerical solution of problems of elastic scattering by open arcs in two dimensions. The algorithms utilize weighted versions of the classical elastic integral operators associated with Dirichlet and Neumann boundary conditions, where the integral weight accounts for (and regularizes) the singularity of the integral‐equation solutions at the open‐arc endpoints. Crucially, the method also incorporates a certain “open‐arc elastic Calderón relation” introduced in this article, whose validity is demonstrated on the basis of numerical experiments, but whose rigorous mathematical proof is left for future work. (In fact, the aforementioned open‐arc elastic Calderón relation generalizes a corresponding elastic Calderón relation for closed surfaces, which is also introduced in this article, and for which a rigorous proof is included.) Using the open‐surface Calderón relation in conjunction with spectrally accurate quadrature rules and the Krylov‐subspace linear algebra solver GMRES, the proposed overall open‐arc elastic solver produces results of high accuracy in small number of iterations, for both low and high frequencies. A variety of numerical examples in this article demonstrate the accuracy and efficiency of the proposed methodology. 
    more » « less
  5. Boundary integral numerical methods are among the most accurate methods for interfacial Stokes flow, and are widely applied. They have the advantage that only the boundary of the domain must be discretized, which reduces the number of discretization points and allows the treatment of complicated interfaces. Despite their popularity, there is no analysis of the convergence of these methods for interfacial Stokes flow. In practice, the stability of discretizations of the boundary integral formulation can depend sensitively on details of the discretization and on the application of numerical filters. We present a convergence analysis of the boundary integral method for Stokes flow, focusing on a rather general method for computing the evolution of an elastic capsule or viscous drop in 2D strain and shear flows. The analysis clarifies the role of numerical filters in practical computations. 
    more » « less