Summary The development of calcification by the coccolithophores had a profound impact on ocean carbon cycling, but the evolutionary steps leading to the formation of these complex biomineralized structures are not clear. Heterococcoliths consisting of intricately shaped calcite crystals are formed intracellularly by the diploid life cycle phase. Holococcoliths consisting of simple rhombic crystals can be produced by the haploid life cycle stage but are thought to be formed extracellularly, representing an independent evolutionary origin of calcification.We use advanced microscopy techniques to determine the nature of coccolith formation and complex crystal formation in coccolithophore life cycle stages.We find that holococcoliths are formed in intracellular compartments in a similar manner to heterococcoliths. However, we show that silicon is not required for holococcolith formation and that the requirement for silicon in certain coccolithophore species relates specifically to the process of crystal morphogenesis in heterococcoliths.We therefore propose an evolutionary scheme in which the lower complexity holococcoliths represent an ancestral form of calcification in coccolithophores. The subsequent recruitment of a silicon‐dependent mechanism for crystal morphogenesis in the diploid life cycle stage led to the emergence of the intricately shaped heterococcoliths, enabling the formation of the elaborate coccospheres that underpin the ecological success of coccolithophores.
more »
« less
Characterization of the molecular mechanisms of silicon uptake in coccolithophores
Abstract Coccolithophores are an important group of calcifying marine phytoplankton. Although coccolithophores are not silicified, some species exhibit a requirement for Si in the calcification process. These species also possess a novel protein (SITL) that resembles the SIT family of Si transporters found in diatoms. However, the nature of Si transport in coccolithophores is not yet known, making it difficult to determine the wider role of Si in coccolithophore biology. Here, we show that coccolithophore SITLs act as Na+‐coupled Si transporters when expressed in heterologous systems and exhibit similar characteristics to diatom SITs. We find thatCbSITLfromCoccolithus braarudiiis transcriptionally regulated by Si availability and is expressed in environmental coccolithophore populations. However, the Si requirement ofC. braarudiiand other coccolithophores is very low, with transport rates of exogenous Si below the level of detection in sensitive assays of Si transport. As coccoliths contain only low levels of Si, we propose that Si acts to support the calcification process, rather than forming a structural component of the coccolith itself. Si is therefore acting as a micronutrient in coccolithophores and natural populations are only likely to experience Si limitation in circumstances where dissolved silicon (DSi) is depleted to extreme levels.
more »
« less
- PAR ID:
- 10396396
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Environmental Microbiology
- Volume:
- 25
- Issue:
- 2
- ISSN:
- 1462-2912
- Format(s):
- Medium: X Size: p. 315-330
- Size(s):
- p. 315-330
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Coccolithophores fix organic carbon and produce calcite plates (coccoliths) that ballast organic matter and facilitate carbon export. Photosynthesis consumes carbon dioxide, while calcification produces it, raising questions about whether coccolithophores are a net sink or source of carbon. We characterized the physiology of calcified and noncalcified (“naked”) phenotypes ofEmiliania huxleyi(CCMP374) and investigated the relationship between calcification and photosynthesis across a gradient of light (25–2000 μmol photons m−2 s−1) spanning the euphotic zone. Growth and photophysiological parameters increased with light until reaching a mid‐light (150 μmol photons m−2 s−1) maximum for both phenotypes. Calcified cells were characterized by enhanced photophysiology and less photoinhibition. Further, enhanced bicarbonate transport in calcified cells led to higher rates of particulate organic carbon fixation and growth compared to naked cells at mid‐light to high light (150–2000 μmol photons m−2 s−1). Coccolith production was similarly high at mid and high light, but the rate of coccolith shedding was >3‐fold lower at high‐light (1.2 vs. 0.35 coccoliths cell−1 h−1). The cellular mechanims(s) of this differential shedding remain unknown and underly light‐related controls on coccosphere maintenance. Our data suggest coccoliths shade cells at high light and that enhanced bicarbonate transport associated with calcification increases internal carbon supplies available for organic carbon fixation.more » « less
-
Abstract Multiple Arabidopsis H+/Cation exchangers (CAXs) participate in high‐capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1‐4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast‐localised H+/Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP‐MS) and synchrotron X‐ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP‐MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild‐type plants grown in Ca‐limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+/Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels.more » « less
-
Substrate identification of putative NCS1 and NCS2 nucleobase transporters in Pseudomonas aeruginosaMathee, Kalai; Dandekar, Ajai A (Ed.)ABSTRACT Pseudomonas aeruginosais an opportunistic pathogen that can salvage nucleobases from the environment to conserve nutrients that would otherwise be spent onde novonucleotide biosynthesis. However, little is known regarding the substrate specificity of the 13 putative nucleobase transporters inP. aeruginosa. Here, using a combination of genetic and chemical approaches, we report substrate identifications for 10 putative nucleobase transporters inP. aeruginosa. Specifically, we individually expressed each transporter in a genetic background lacking all 13 putative nucleobase transporters and quantified growth on a panel of 10 nucleobases as sole nitrogen sources. We confirmed these expression-based substrate identifications using targeted genetic knockouts. In a complementary approach, we utilized four toxic nucleobase antimetabolites to characterize antimicrobial activity in these same strains. We identified the sole allantoin transporter as well as transporters for guanine, xanthine, uric acid, cytosine, thymine, uracil, and dihydrouracil. Furthermore, we associated at least five nucleobase transporters with hypoxanthine, which has been recently reported to be an antibiofilm cue inP. aeruginosa. These results provide an initial characterization of the putative nucleobase transporters inP. aeruginosa, significantly advancing our understanding of nucleobase transport in this clinically relevant organism. IMPORTANCEPseudomonas aeruginosais a frequently multidrug-resistant opportunistic pathogen and one of the most common causes of healthcare-acquired infections. While nucleobases are known to support growth in nutrient-limited conditions, recent work showed that adenine and hypoxanthine can also decreaseP. aeruginosabiofilm formation by disrupting c-di-GMP metabolism. Thus, nucleobase transport may be relevant to multiple aspects ofP. aeruginosabiology and pathogenesis. However, there is currently little known about the transport of nucleobases inP. aeruginosa. Our work reports initial substrate identifications for 10 putative nucleobase transporters inP. aeruginosa, providing new tools to address previously difficult-to-test hypotheses relating to nucleobase transport in this organism.more » « less
-
Phytoplankton play a central role in the regulation of global carbon and nutrient cycles, forming the basis of the marine food webs. A group of biogeochemically important phytoplankton, the coccolithophores, produce calcium carbonate scales that have been hypothesized to deter or reduce grazing by microzooplankton. Here, a meta-analysis of mesocosm-based experiments demonstrates that calcification of the cosmopolitan coccolithophore, Emiliania huxleyi , fails to deter microzooplankton grazing. The median grazing to growth ratio for E. huxleyi (0.56 ± 0.40) was not significantly different among non-calcified nano- or picoeukaryotes (0.71 ± 0.31 and 0.55 ± 0.34, respectively). Additionally, the environmental concentration of E. huxleyi did not drive preferential grazing of non-calcified groups. These results strongly suggest that the possession of coccoliths does not provide E. huxleyi effective protection from microzooplankton grazing. Such indiscriminate consumption has implications for the dissolution and fate of CaCO 3 in the ocean, and the evolution of coccoliths.more » « less
An official website of the United States government
