skip to main content


Title: 3XOR Games with Perfect Commuting Operator Strategies Have Perfect Tensor Product Strategies and are Decidable in Polynomial Time
Abstract

We consider 3XOR games with perfect commuting operator strategies. Given any 3XOR game, we show existence of a perfect commuting operator strategy for the game can be decided in polynomial time. Previously this problem was not known to be decidable. Our proof leads to a construction, showing a 3XOR game has a perfect commuting operator strategy iff it has a perfect tensor product strategy using a 3 qubit (8 dimensional) GHZ state. This shows that for perfect 3XOR games the advantage of a quantum strategy over a classical strategy (defined by the quantum-classical bias ratio) is bounded. This is in contrast to the general 3XOR case where the optimal quantum strategies can require high dimensional states and there is no bound on the quantum advantage. To prove these results, we first show equivalence between deciding the value of an XOR game and solving an instance of the subgroup membership problem on a class of right angled Coxeter groups. We then show, in a proof that consumes most of this paper, that the instances of this problem corresponding to 3XOR games can be solved in polynomial time.

 
more » « less
NSF-PAR ID:
10396412
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Communications in Mathematical Physics
Volume:
400
Issue:
2
ISSN:
0010-3616
Page Range / eLocation ID:
p. 731-791
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Although security games have attracted intensive research attention over the past years, few existing works consider how information from local communities would affect the game. In this paper, we introduce a new player -- a strategic informant, who can observe and report upcoming attacks -- to the defender-attacker security game setting. Characterized by a private type, the informant has his utility structure that leads to his strategic behaviors. We model the game as a 3-player extensive-form game and propose a novel solution concept of Strong Stackelberg-perfect Bayesian equilibrium. To compute the optimal defender strategy, we first show that although the informant can have infinitely many types in general, the optimal defense plan can only include a finite (exponential) number of different patrol strategies. We then prove that there exists a defense plan with only a linear number of patrol strategies that achieve the optimal defender's utility, which significantly reduces the computational burden and allows us to solve the game in polynomial time using linear programming. Finally, we conduct extensive experiments to show the effect of the strategic informant and demonstrate the effectiveness of our algorithm.

     
    more » « less
  2. We extend Kreps and Wilson's concept of sequential equilibrium to games with infinite sets of signals and actions. A strategy profile is a conditional ε ‐equilibrium if, for any of a player's positive probability signal events, his conditional expected utility is within ε of the best that he can achieve by deviating. With topologies on action sets, a conditional ε ‐equilibrium is full if strategies give every open set of actions positive probability. Such full conditional ε ‐equilibria need not be subgame perfect, so we consider a non‐topological approach. Perfect conditional ε ‐equilibria are defined by testing conditional ε ‐rationality along nets of small perturbations of the players' strategies and of nature's probability function that, for any action and for almost any state, make this action and state eventually (in the net) always have positive probability. Every perfect conditional ε ‐equilibrium is a subgame perfect ε ‐equilibrium, and, in finite games, limits of perfect conditional ε ‐equilibria as ε  → 0 are sequential equilibrium strategy profiles. But limit strategies need not exist in infinite games so we consider instead the limit distributions over outcomes. We call such outcome distributions perfect conditional equilibrium distributions and establish their existence for a large class of regular projective games. Nature's perturbations can produce equilibria that seem unintuitive and so we augment the game with a net of permissible perturbations. 
    more » « less
  3. In the Colonel Blotto game, which was initially introduced by Borel in 1921, two colonels simultaneously distribute their troops across different battlefields. The winner of each battlefield is determined independently by a winner-takes-all rule. The ultimate payoff for each colonel is the number of battlefields won. The Colonel Blotto game is commonly used for analyzing a wide range of applications from the U.S. Presidential election to innovative technology competitions to advertising, sports, and politics. There are persistent efforts to find the optimal strategies for the Colonel Blotto game. However, the first polynomial-time algorithm for that has very recently been provided by Ahmadinejad, Dehghani, Hajiaghayi, Lucier, Mahini, and Seddighin. Their algorithm consists of an exponential size linear program (LP), which they solve using the ellipsoid method. Because of the use of the ellipsoid method, despite its significant theoretical importance, this algorithm is highly impractical. In general, even the simplex method (despite its exponential running time in practice) performs better than the ellipsoid method in practice. In this paper, we provide the first polynomial-size LP formulation of the optimal strategies for the Colonel Blotto game using linear extension techniques. Roughly speaking, we consider the natural representation of the strategy space polytope and transform it to a higher dimensional strategy space, which interestingly has exponentially fewer facets. In other words, we add a few variables to the LP such that, surprisingly, the number of constraints drops down to a polynomial. We use this polynomial-size LP to provide a simpler and significantly faster algorithm for finding optimal strategies of the Colonel Blotto game. We further show this representation is asymptotically tight, which means there exists no other linear representation of the strategy space with fewer constraints. We also extend our approach to multidimensional Colonel Blotto games, in which players may have different sorts of budgets, such as money, time, human resources, etc. By implementing this algorithm, we are able to run tests that were previously impossible to solve in a reasonable time. This information allows us to observe some interesting properties of Colonel Blotto; for example, we find out the behavior of players in the discrete model is very similar to the continuous model Roberson solved. 
    more » « less
  4. null (Ed.)
    The existence of simple uncoupled no-regret learning dynamics that converge to correlated equilibria in normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known for more than 20 years that when all players seek to minimize their internal regret in a repeated normal-form game, the empirical frequency of play converges to a normal-form correlated equilibrium. Extensive-form games generalize normal-form games by modeling both sequential and simultaneous moves, as well as imperfect information. Because of the sequential nature and presence of private information in the game, correlation in extensive-form games possesses significantly different properties than its counterpart in normal-form games, many of which are still open research directions. Extensive-form correlated equilibrium (EFCE) has been proposed as the natural extensive-form counterpart to the classical notion of correlated equilibrium in normal-form games. Compared to the latter, the constraints that define the set of EFCEs are significantly more complex, as the correlation device must keep into account the evolution of beliefs of each player as they make observations throughout the game. Due to that significant added complexity, the existence of uncoupled learning dynamics leading to an EFCE has remained a challenging open research question for a long time. In this article, we settle that question by giving the first uncoupled no-regret dynamics that converge to the set of EFCEs in n-player general-sum extensive-form games with perfect recall. We show that each iterate can be computed in time polynomial in the size of the game tree, and that, when all players play repeatedly according to our learning dynamics, the empirical frequency of play is proven to be a O(T^-0.5)-approximate EFCE with high probability after T game repetitions, and an EFCE almost surely in the limit. 
    more » « less
  5. Deception is a crucial tool in the cyberdefence repertoire, enabling defenders to leverage their informational advantage to reduce the likelihood of successful attacks. One way deception can be employed is through obscuring, or masking, some of the information about how systems are configured, increasing attacker’s uncertainty about their tar-gets. We present a novel game-theoretic model of the resulting defender- attacker interaction, where the defender chooses a subset of attributes to mask, while the attacker responds by choosing an exploit to execute. The strategies of both players have combinatorial structure with complex informational dependencies, and therefore even representing these strategies is not trivial. First, we show that the problem of computing an equilibrium of the resulting zero-sum defender-attacker game can be represented as a linear program with a combinatorial number of system configuration variables and constraints, and develop a constraint generation approach for solving this problem. Next, we present a novel highly scalable approach for approximately solving such games by representing the strategies of both players as neural networks. The key idea is to represent the defender’s mixed strategy using a deep neural network generator, and then using alternating gradient-descent-ascent algorithm, analogous to the training of Generative Adversarial Networks. Our experiments, as well as a case study, demonstrate the efficacy of the proposed approach. 
    more » « less