Abstract We prove that the Hilbert scheme ofkpoints on$${\mathbb {C}}^2$$ ($$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ ) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$${\mathbb {C}}^\times _\hbar $$ -action. First, we find a two-parameter family$$X_{k,l}$$ of self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ is obtained via direct limit$$l\longrightarrow \infty $$ and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$\hbar $$ -opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-Nsheaves on$${\mathbb {P}}^2$$ with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual.
more »
« less
Well-posedness and applications of classical elastohydrodynamics for a swimming filament
Abstract We consider a classical elastohydrodynamic model of an inextensible filament undergoing planar motion in . The hydrodynamics are described by resistive force theory, and the fibre elasticity is governed by Euler–Bernoulli beam theory. Our aim is twofold: (1) Serve as a starting point for developing the mathematical analysis of filament elastohydrodynamics, particularly the analytical treatment of an inextensibility constraint, and (2) As an application, prove conditions on internal fibre forcing that allow a free-ended filament to swim. Our analysis of fibre swimming speed is supplemented with a numerical optimization of the internal fibre forcing, as well as a novel numerical method for simulating an inextensible swimmer.
more »
« less
- PAR ID:
- 10396483
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Nonlinearity
- Volume:
- 36
- Issue:
- 3
- ISSN:
- 0951-7715
- Page Range / eLocation ID:
- p. 1799-1839
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
AbstractThe characterization of normal mode (CNM) procedure coupled with an adiabatic connection scheme (ACS) between local and normal vibrational modes, both being a part of the Local Vibrational Mode theory developed in our group, can identify spectral changes as structural fingerprints that monitor symmetry alterations, such as those caused by Jahn-Teller (JT) distortions. Employing the PBE0/Def2-TZVP level of theory, we investigated in this proof-of-concept study the hexaaquachromium cation case,$$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$ /$$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$ , as a commonly known example for a JT distortion, followed by the more difficult ferrous and ferric hexacyanide anion case,$$\mathrm {[Fe{(CN)}_6]^{4-}}$$ /$$\mathrm {[Fe{(CN)}_6]^{3-}}$$ . We found that in both cases CNM of the characteristic normal vibrational modes reflects delocalization consistent with high symmetry and ACS confirms symmetry breaking, as evidenced by the separation of axial and equatorial group frequencies. As underlined by the Cremer-Kraka criterion for covalent bonding, from$$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$ to$$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$ there is an increase in axial covalency whereas the equatorial bonds shift toward electrostatic character. From$$\mathrm {[Fe{(CN)}_6]^{4-}}$$ to$$\mathrm {[Fe{(CN)}_6]^{3-}}$$ we observed an increase in covalency without altering the bond nature. Distinct$$\pi $$ back-donation disparity could be confirmed by comparison with the isolated CN$$^-$$ system. In summary, our study positions the CNM/ACS protocol as a robust tool for investigating less-explored JT distortions, paving the way for future applications. Graphical abstractThe adiabatic connection scheme relates local to normal modes, with symmetry breaking giving rise to axial and equatorial group local frequenciesmore » « less
-
Abstract In this paper, we present counterexamples to maximal$$L^p$$ -regularity for a parabolic PDE. The example is a second-order operator in divergence form with space and time-dependent coefficients. It is well-known from Lions’ theory that such operators admit maximal$$L^2$$ -regularity on$$H^{-1}$$ under a coercivity condition on the coefficients, and without any regularity conditions in time and space. We show that in general one cannot expect maximal$$L^p$$ -regularity on$$H^{-1}(\mathbb {R}^d)$$ or$$L^2$$ -regularity on$$L^2(\mathbb {R}^d)$$ .more » « less
-
Abstract The radiation of steady surface gravity waves by a uniform stream$$U_{0}$$ over locally confined (width$$L$$ ) smooth topography is analyzed based on potential flow theory. The linear solution to this classical problem is readily found by Fourier transforms, and the nonlinear response has been studied extensively by numerical methods. Here, an asymptotic analysis is made for subcritical flow$$D/\lambda > 1$$ in the low-Froude-number ($$F^{2} \equiv \lambda /L \ll 1$$ ) limit, where$$\lambda = U_{0}^{2} /g$$ is the lengthscale of radiating gravity waves and$$D$$ is the uniform water depth. In this regime, the downstream wave amplitude, although formally exponentially small with respect to$$F$$ , is determined by a fully nonlinear mechanism even for small topography amplitude. It is argued that this mechanism controls the wave response for a broad range of flow conditions, in contrast to linear theory which has very limited validity.more » « less
-
Abstract We present a new suite of numerical simulations of the star-forming interstellar medium (ISM) in galactic disks using the TIGRESS-NCR framework. Distinctive aspects of our simulation suite are (1) sophisticated and comprehensive numerical treatments of essential physical processes including magnetohydrodynamics, self-gravity, and galactic differential rotation, as well as photochemistry, cooling, and heating coupled with direct ray-tracing UV radiation transfer and resolved supernova feedback and (2) wide parameter coverage including the variation in metallicity over , gas surface density Σgas∼ 5–150M⊙pc−2, and stellar surface density Σstar∼ 1–50M⊙pc−2. The range of emergent star formation rate surface density is ΣSFR∼ 10−4–0.5M⊙kpc−2yr−1, and ISM total midplane pressure isPtot/kB= 103–106cm−3K, withPtotequal to the ISM weight . For given Σgasand Σstar, we find . We provide an interpretation based on the pressure-regulated feedback-modulated (PRFM) star formation theory. The total midplane pressure consists of thermal, turbulent, and magnetic stresses. We characterize feedback modulation in terms of the yield ϒ, defined as the ratio of each stress to ΣSFR. The thermal feedback yield varies sensitively with both weight and metallicity as , while the combined turbulent and magnetic feedback yield shows weaker dependence . The reduction in ΣSFRat low metallicity is due mainly to enhanced thermal feedback yield, resulting from reduced attenuation of UV radiation. With the metallicity-dependent calibrations we provide, PRFM theory can be used for a new subgrid star formation prescription in cosmological simulations where the ISM is unresolved.more » « less
An official website of the United States government
