skip to main content


Title: StretchAR: Exploiting Touch and Stretch as a Method of Interaction for Smart Glasses Using Wearable Straps
Over the past decade, augmented reality (AR) developers have explored a variety of approaches to allow users to interact with the information displayed on smart glasses and head-mounted displays (HMDs). Current interaction modalities such as mid-air gestures, voice commands, or hand-held controllers provide a limited range of interactions with the virtual content. Additionally, these modalities can also be exhausting, uncomfortable, obtrusive, and socially awkward. There is a need to introduce comfortable interaction techniques for smart glasses and HMDS without the need for visual attention. This paper presents StretchAR, wearable straps that exploit touch and stretch as input modalities to interact with the virtual content displayed on smart glasses. StretchAR straps are thin, lightweight, and can be attached to existing garments to enhance users' interactions in AR. StretchAR straps can withstand strains up to 190% while remaining sensitive to touch inputs. The strap allows the effective combination of these inputs as a mode of interaction with the content displayed through AR widgets, maps, menus, social media, and Internet of Things (IoT) devices. Furthermore, we conducted a user study with 15 participants to determine the potential implications of the use of StretchAR as input modalities when placed on four different body locations (head, chest, forearm, and wrist). This study reveals that StretchAR can be used as an efficient and convenient input modality for smart glasses with a 96% accuracy. Additionally, we provide a collection of 28 interactions enabled by the simultaneous touch-stretch capabilities of StretchAR. Finally, we facilitate recommendation guidelines for the design, fabrication, placement, and possible applications of StretchAR as an interaction modality for AR content displayed on smart glasses.  more » « less
Award ID(s):
1839971
NSF-PAR ID:
10396714
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
6
Issue:
3
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Freehand gesture is an essential input modality for modern Augmented Reality (AR) user experiences. However, developing AR applications with customized hand interactions remains a challenge for end-users. Therefore, we propose GesturAR, an end-to-end authoring tool that supports users to create in-situ freehand AR applications through embodied demonstration and visual programming. During authoring, users can intuitively demonstrate the customized gesture inputs while referring to the spatial and temporal context. Based on the taxonomy of gestures in AR, we proposed a hand interaction model which maps the gesture inputs to the reactions of the AR contents. Thus, users can author comprehensive freehand applications using trigger-action visual programming and instantly experience the results in AR. Further, we demonstrate multiple application scenarios enabled by GesturAR, such as interactive virtual objects, robots, and avatars, room-level interactive AR spaces, embodied AR presentations, etc. Finally, we evaluate the performance and usability of GesturAR through a user study. 
    more » « less
  2. Despite the phenomenal advances in the computational power and functionality of electronic systems, human-machine interaction has largely been limited to simple control panels, keyboard, mouse and display. Consequently, these systems either rely critically on close human guidance or operate almost independently from the user. An exemplar technology integrated tightly into our lives is the smartphone. However, the term “smart” is a misnomer, since it has fundamentally no intelligence to understand its user. The users still have to type, touch or speak (to some extent) to express their intentions in a form accessible to the phone. Hence, intelligent decision making is still almost entirely a human task. A life-changing experience can be achieved by transforming machines from passive tools to agents capable of understanding human physiology and what their user wants [1]. This can advance human capabilities in unimagined ways by building a symbiotic relationship to solve real world problems cooperatively. One of the high-impact application areas of this approach is assistive internet of things (IoT) technologies for physically challenged individuals. The Annual World Report on Disability reveals that 15% of the world population lives with disability, while 110 to 190 million of these people have difficulty in functioning [1]. Quality of life for this population can improve significantly if we can provide accessibility to smart devices, which provide sensory inputs and assist with everyday tasks. This work demonstrates that smart IoT devices open up the possibility to alleviate the burden on the user by equipping everyday objects, such as a wheelchair, with decision-making capabilities. Moving part of the intelligent decision making to smart IoT objects requires a robust mechanism for human-machine communication (HMC). To address this challenge, we present examples of multimodal HMC mechanisms, where the modalities are electroencephalogram (EEG), speech commands, and motion sensing. We also introduce an IoT co-simulation framework developed using a network simulator (OMNeT++) and a robot simulation platform Virtual Robot Experimentation Platform (V-REP). We show how this framework is used to evaluate the effectiveness of different HMC strategies using automated indoor navigation as a driver application. 
    more » « less
  3. The popular concepts of Virtual Reality (VR) and Augmented Reality (AR) arose from our ability to interact with objects and environments that appear to be real, but are not. One of the most powerful aspects of these paradigms is the ability of virtual entities to embody a richness of behavior and appearance that we perceive as compatible with reality, and yet unconstrained by reality. The freedom to be or do almost anything helps to reinforce the notion that such virtual entities are inherently distinct from the real world—as if they were magical. This independent magical status is reinforced by the typical need for the use of “magic glasses” (head-worn displays) and “magic wands” (spatial interaction devices) that are ceremoniously bestowed on a chosen few. For those individuals, the experience is inherently egocentric in nature—the sights and sounds effectively emanate from the magic glasses, not the real world, and unlike the magic we are accustomed to from cinema, the virtual entities are unable to affect the real world. This separation of real and virtual is also inherent in our related conceptual frameworks, such as Milgram’s Virtuality Continuum, where the real and virtual are explicitly distinguished and mixed. While these frameworks are indeed conceptual, we often feel the need to position our systems and research somewhere in the continuum, further reinforcing the notion that real and virtual are distinct. The very structures of our professional societies, our research communities, our journals, and our conferences tend to solidify the evolutionary separation of the virtual from the real. However, independent forces are emerging that could reshape our notions of what is real and virtual, and transform our sense of what it means to interact with technology. First, even within the VR/AR communities, as the appearance and behavioral realism of virtual entities improves, virtual experiences will become more real. Second, as domains such as artificial intelligence, robotics, and the Internet of Things (IoT) mature and permeate throughout our lives, experiences with real things will become more virtual. The convergence of these various domains has the potential to transform the egocentric magical nature of VR/AR into more pervasive allocentric magical experiences and interfaces that interact with and can affect the real world. This transformation will blur traditional technological boundaries such that experiences will no longer be distinguished as real or virtual, and our sense for what is natural will evolve to include what we once remember as cinematic magic. 
    more » « less
  4. Abstract Augmented reality (AR) devices, as smart glasses, enable users to see both the real world and virtual images simultaneously, contributing to an immersive experience in interactions and visualization. Recently, to reduce the size and weight of smart glasses, waveguides incorporating holographic optical elements in the form of advanced grating structures have been utilized to provide light-weight solutions instead of bulky helmet-type headsets. However current waveguide displays often have limited display resolution, efficiency and field-of-view, with complex multi-step fabrication processes of lower yield. In addition, current AR displays often have vergence-accommodation conflict in the augmented and virtual images, resulting in focusing-visual fatigue and eye strain. Here we report metasurface optical elements designed and experimentally implemented as a platform solution to overcome these limitations. Through careful dispersion control in the excited propagation and diffraction modes, we design and implement our high-resolution full-color prototype, via the combination of analytical–numerical simulations, nanofabrication and device measurements. With the metasurface control of the light propagation, our prototype device achieves a 1080-pixel resolution, a field-of-view more than 40°, an overall input–output efficiency more than 1%, and addresses the vergence-accommodation conflict through our focal-free implementation. Furthermore, our AR waveguide is achieved in a single metasurface-waveguide layer, aiding the scalability and process yield control. 
    more » « less
  5. Augmented reality (AR) technologies, such as Microsoft’s HoloLens head-mounted display and AR-enabled car windshields, are rapidly emerging. AR applications provide users with immersive virtual experiences by capturing input from a user’s surroundings and overlaying virtual output on the user’s perception of the real world. These applications enable users to interact with and perceive virtual content in fundamentally new ways. However, the immersive nature of AR applications raises serious security and privacy concerns. Prior work has focused primarily on input privacy risks stemming from applications with unrestricted access to sensor data. However, the risks associated with malicious or buggy AR output remain largely unexplored. For example, an AR windshield application could intentionally or accidentally obscure oncoming vehicles or safety-critical output of other AR applications. In this work, we address the fundamental challenge of securing AR output in the face of malicious or buggy applications. We design, prototype, and evaluate Arya, an AR platform that controls application output according to policies specified in a constrained yet expressive policy framework. In doing so, we identify and overcome numerous challenges in securing AR output. 
    more » « less