As we develop computing platforms for augmented reality (AR) head-mounted display (HMDs) technologies for social or workplace environments, understanding how users interact with notifications in immersive environments has become crucial. We researched effectiveness and user preferences of different interaction modalities for notifications, along with two types of notification display methods. In our study, participants were immersed in a simulated cooking environment using an AR-HMD, where they had to fulfill customer orders. During the cooking process, participants received notifications related to customer orders and ingredient updates. They were given three interaction modes for those notifications: voice commands, eye gaze and dwell, and hand gestures. To manage multiple notifications at once, we also researched two different notification list displays, one attached to the user’s hand and one in the world. Results indicate that participants preferred using their hands to interact with notifications and having the list of notifications attached to their hands. Voice and gaze interaction was perceived as having lower usability than touch
more »
« less
StretchAR: Exploiting Touch and Stretch as a Method of Interaction for Smart Glasses Using Wearable Straps
Over the past decade, augmented reality (AR) developers have explored a variety of approaches to allow users to interact with the information displayed on smart glasses and head-mounted displays (HMDs). Current interaction modalities such as mid-air gestures, voice commands, or hand-held controllers provide a limited range of interactions with the virtual content. Additionally, these modalities can also be exhausting, uncomfortable, obtrusive, and socially awkward. There is a need to introduce comfortable interaction techniques for smart glasses and HMDS without the need for visual attention. This paper presents StretchAR, wearable straps that exploit touch and stretch as input modalities to interact with the virtual content displayed on smart glasses. StretchAR straps are thin, lightweight, and can be attached to existing garments to enhance users' interactions in AR. StretchAR straps can withstand strains up to 190% while remaining sensitive to touch inputs. The strap allows the effective combination of these inputs as a mode of interaction with the content displayed through AR widgets, maps, menus, social media, and Internet of Things (IoT) devices. Furthermore, we conducted a user study with 15 participants to determine the potential implications of the use of StretchAR as input modalities when placed on four different body locations (head, chest, forearm, and wrist). This study reveals that StretchAR can be used as an efficient and convenient input modality for smart glasses with a 96% accuracy. Additionally, we provide a collection of 28 interactions enabled by the simultaneous touch-stretch capabilities of StretchAR. Finally, we facilitate recommendation guidelines for the design, fabrication, placement, and possible applications of StretchAR as an interaction modality for AR content displayed on smart glasses.
more »
« less
- Award ID(s):
- 1839971
- PAR ID:
- 10396714
- Date Published:
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 6
- Issue:
- 3
- ISSN:
- 2474-9567
- Page Range / eLocation ID:
- 1 to 26
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Immersive Analytics (IA) and consumer adoption of augmented reality (AR) and virtual reality (VR) head-mounted displays (HMDs) are both rapidly growing. When used in conjunction, stereoscopic IA environments can offer improved user understanding and engagement; however, it is unclear how the choice of stereoscopic display impacts user interactions within an IA environment. This paper presents a pilot study that examines the impact of stereoscopic display choice on object manipulation and environmental navigation using consumeravailable AR and VR HMDs. Our observations indicate that the display can impact how users manipulate virtual content and how they navigate the environment.more » « less
-
Freehand gesture is an essential input modality for modern Augmented Reality (AR) user experiences. However, developing AR applications with customized hand interactions remains a challenge for end-users. Therefore, we propose GesturAR, an end-to-end authoring tool that supports users to create in-situ freehand AR applications through embodied demonstration and visual programming. During authoring, users can intuitively demonstrate the customized gesture inputs while referring to the spatial and temporal context. Based on the taxonomy of gestures in AR, we proposed a hand interaction model which maps the gesture inputs to the reactions of the AR contents. Thus, users can author comprehensive freehand applications using trigger-action visual programming and instantly experience the results in AR. Further, we demonstrate multiple application scenarios enabled by GesturAR, such as interactive virtual objects, robots, and avatars, room-level interactive AR spaces, embodied AR presentations, etc. Finally, we evaluate the performance and usability of GesturAR through a user study.more » « less
-
Augmented reality (AR) technologies, such as Microsoft’s HoloLens head-mounted display and AR-enabled car windshields, are rapidly emerging. AR applications provide users with immersive virtual experiences by capturing input from a user’s surroundings and overlaying virtual output on the user’s perception of the real world. These applications enable users to interact with and perceive virtual content in fundamentally new ways. However, the immersive nature of AR applications raises serious security and privacy concerns. Prior work has focused primarily on input privacy risks stemming from applications with unrestricted access to sensor data. However, the risks associated with malicious or buggy AR output remain largely unexplored. For example, an AR windshield application could intentionally or accidentally obscure oncoming vehicles or safety-critical output of other AR applications. In this work, we address the fundamental challenge of securing AR output in the face of malicious or buggy applications. We design, prototype, and evaluate Arya, an AR platform that controls application output according to policies specified in a constrained yet expressive policy framework. In doing so, we identify and overcome numerous challenges in securing AR output.more » « less
-
Interacting in stereoscopic head mounted displays can be difficult. There are not yet clear standards for how interactions in these environments should be performed. In virtual reality there are a number of well designed interaction techniques; however, augmented reality interaction techniques still need to be improved before they can be easily used. This dissertation covers work done towards understanding how users navigate and interact with virtual environments that are displayed in stereoscopic head-mounted displays. With this understanding, existing techniques from virtual reality devices ... (For more, see "View full record.")more » « less
An official website of the United States government

