skip to main content


Title: Dioxygen Binding Is Controlled by the Protein Environment in Non‐heme Fe II and 2‐Oxoglutarate Oxygenases: A Study on Histone Demethylase PHF8 and an Ethylene‐Forming Enzyme
Abstract

This study investigates dioxygen binding and 2‐oxoglutarate (2OG) coordination by two model non‐heme FeII/2OG enzymes: a class 7 histone demethylase (PHF8) that catalyzes the hydroxylation of its H3K9me2 histone substrate leading to demethylation reactivity and the ethylene‐forming enzyme (EFE), which catalyzes two competing reactions of ethylene generation and substratel‐Arg hydroxylation. Although both enzymes initially bind 2OG by using anoff‐line2OG coordination mode, in PHF8, the substrate oxidation requires a transition to anin‐linemode, whereas EFE is catalytically productive for ethylene production from 2OG in theoff‐linemode. We used classical molecular dynamics (MD), quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM metadynamics (QM/MM‐MetD) simulations to reveal that it is the dioxygen binding process and, ultimately, the protein environment that control the formation of thein‐lineFeIII‐OO⋅intermediate in PHF8 and theoff‐lineFeIII‐OO⋅intermediate in EFE.

 
more » « less
Award ID(s):
2203472 2203630 1904215
NSF-PAR ID:
10396775
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
29
Issue:
24
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The non-heme Fe( ii ) and 2-oxoglutarate (2OG) dependent ethylene-forming enzyme (EFE) catalyzes both ethylene generation and l -Arg hydroxylation. Despite experimental and computational progress in understanding the mechanism of EFE, no EFE variant has been optimized for ethylene production while simultaneously reducing the l -Arg hydroxylation activity. In this study, we show that the two l -Arg binding conformations, associated with different reactivity preferences in EFE, lead to differences in the intrinsic electric field (IntEF) of EFE. Importantly, we suggest that applying an external electric field (ExtEF) along the Fe–O bond in the EFE·Fe( iii )·OO − ˙·2OG· l -Arg complex can switch the EFE reactivity between l -Arg hydroxylation and ethylene generation. Furthermore, we explored how applying an ExtEF alters the geometry, electronic structure of the key reaction intermediates, and the individual energy contributions of second coordination sphere (SCS) residues through combined quantum mechanics/molecular mechanics (QM/MM) calculations. Experimentally generated variant forms of EFE with alanine substituted for SCS residues responsible for stabilizing the key intermediates in the two reactions of EFE led to changes in enzyme activity, thus demonstrating the key role of these residues. Overall, the results of applying an ExtEF indicate that making the IntEF of EFE less negative and stabilizing the off-line binding of 2OG is predicted to increase ethylene generation while reducing l -Arg hydroxylation. 
    more » « less
  2. This review summarizes the structures, biochemical properties, and mechanisms of two major biological sources of ethylene, the ethylene-forming enzyme (EFE) and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO). EFE is found in selected bacteria and fungi where it catalyzes two reactions: (1) the oxygen-dependent conversion of 2-oxoglutarate (2OG) to ethylene plus three molecules of CO2/bicarbonate and (2) the oxidative decarboxylation of 2OG while transforming L-arginine to guanidine and L-Δ1-pyrroline-5-carboxylic acid. ACCO is present in plants where it makes the plant hormone by transforming ACC, O2, and an external reductant to ethylene, HCN, CO2, and water. Despite catalyzing distinct chemical reactions, EFE and ACCO are related in sequence and structure, and both enzymes require Fe(II) for their activity. Advances in our understanding of EFE, derived from both experimental and computational approaches, have clarified how this enzyme catalyzes its dual reactions. Drawing on the published mechanistic studies of ACCO and noting the parallels between this enzyme and EFE, we propose a novel reaction mechanism for ACCO. 
    more » « less
  3. Abstract

    Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2‐oxoglutarate dependent Jumonji‐C (JmjC) Nϵ‐methyl lysine histone demethylases also have N‐methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) studies on the mechanism of N‐methyl arginine demethylation by human KDM4E and compare the results with those reported for N‐methyl lysine demethylation by KDM4A. At the KDM4E active site, Glu191, Asn291, and Ser197 form a conserved scaffold that restricts substrate dynamics; substrate binding is also mediated by an out of active site hydrogen‐bond between the substrate Ser1 and Tyr178. The calculations imply that in either C−H or N−H potential bond cleaving pathways for hydrogen atom transfer (HAT) during N‐methyl arginine demethylation, electron transfer occurs via a σ‐channel; the transition state for the N−H pathway is ∼10 kcal/mol higher than for the C−H pathway due to the higher bond dissociation energy of the N−H bond. The results of applying external electric fields (EEFs) reveal EEFs with positive field strengths parallel to the Fe=O bond have a significant barrier‐lowering effect on the C−H pathway, by contrast, such EEFs inhibit the N−H activation rate. The overall results imply that KDM4 catalyzed N‐methyl arginine demethylation and N‐methyl lysine demethylation occur via similar C−H abstraction and rebound mechanisms leading to methyl group hydroxylation, though there are differences in the interactions leading to productive binding of intermediates.

     
    more » « less
  4. Deoxypodophyllotoxin contains a core of four fused rings (A to D) with three consecutive chiral centers, the last being created by the attachment of a peripheral trimethoxyphenyl ring (E) to ring C. Previous studies have suggested that the iron(II)- and 2-oxoglutarate–dependent (Fe/2OG) oxygenase, deoxypodophyllotoxin synthase (DPS), catalyzes the oxidative coupling of ring B and ring E to form ring C and complete the tetracyclic core. Despite recent efforts to deploy DPS in the preparation of deoxypodophyllotoxin analogs, the mechanism underlying the regio- and stereoselectivity of this cyclization event has not been elucidated. Herein, we report 1) two structures of DPS in complex with 2OG and (±)-yatein, 2) in vitro analysis of enzymatic reactivity with substrate analogs, and 3) model reactions addressing DPS’s catalytic mechanism. The results disfavor a prior proposal of on-pathway benzylic hydroxylation. Rather, the DPS-catalyzed cyclization likely proceeds by hydrogen atom abstraction from C7', oxidation of the benzylic radical to a carbocation, Friedel–Crafts-like ring closure, and rearomatization of ring B by C6 deprotonation. This mechanism adds to the known pathways for transformation of the carbon-centered radical in Fe/2OG enzymes and suggests what types of substrate modification are likely tolerable in DPS-catalyzed production of deoxypodophyllotoxin analogs. 
    more » « less
  5. This work probed the thermal “switchability” from ethylene coordination/insertion to controlled radical polymerization of methyl acrylate (MA) for Brookhart-type α-diimine PdII catalysts. The investigation focused on the extremely bulky 2,6-bis(3,5-dimethylphenyl)-4-methylphenyl (Xyl4Ph) α-diimine N-substituents to probe reversible PdII–C bond activation in the MA-quenched Pd-capped PE intermediate and reversible trapping during radical MA polymerization. The substituent steric effect on the relative stability of various [PE–MA–PdII(ArN═CMeCMe═NAr)]+ chain-end structures and on the bond dissociation-free energy (BDFE) for the homolytic PdII–C bond cleavage has been assessed by DFT calculations at the full quantum mechanics (QM) and QM/molecular mechanics (QM/MM) methods. The structures comprise ester-chelated forms with the Pd atom bonded to the α, β, and γ C atoms as a result of 2,1 MA insertion into the PE–Pd bond and of subsequent chain walking, as well as related monodentate (ring-opened) forms resulting from the addition of MA or acetonitrile. The opened Cα-bonded form is electronically favored for smaller N-substituents, including 2,6-diisopropylphenyl (Dipp), particularly when MeCN is added, but the open Cγ-bonded form is preferred for the extremely bulky system with Ar = Xyl4Ph. The Pdα–C bond is the weakest one to cleave, with the BDFE decreasing as the Ar steric bulk is increased (31.8, 25.8, and 12.6 kcal mol–1 for Ph, Dipp, and Xyl4Ph, respectively). However, experimental investigations on the [PE–MA–PdII(ArN═CMeCMe═NAr)]+ (Ar = Xyl4Ph) macroinitiator do not show any evidence of radical formation under thermal activation conditions, while photolytic activation produces both TEMPO-trapped (TEMPO = 2,2,6,6-tetramethylpiperidinyloxy) and unsaturated MA-containing PE chains. The DFT investigation has highlighted a low-energy pathway for termination of the PE–MA• radicals by disproportionation, promoted by β-H elimination/dissociation and H-atom abstraction from the PdII–H intermediate by a second radical. This phenomenon appears to be the main reason for the failure of this PdII system to control the radical polymerization of MA by the OMRP (OMRP = organometallic-mediated radical polymerization) mechanism. 
    more » « less