Abstract 3D printing using conventional stereolithography is challenging because the polymerized layers adhere to the solid constraining interface. The mechanical separation forces lead to poor process reliability and limit the geometrical design space of the printed parts. Here, these challenges are overcome by utilizing a static inert immiscible liquid below the resin as the constraining interface. We elucidate the mechanisms that enable the static liquid to mitigate stiction in both discrete layer-by-layer and continuous layerless growth modes. The inert liquid functions as a dewetting interface during the discrete growth and as a carrier of oxygen to inhibit polymerization during the continuous growth. This method enables a wide range of process conditions, such as exposure and resin properties, which facilitates micrometer scale resolutions and dimensional accuracies above 95%. We demonstrate multi-scale microstructures with feature sizes ranging from 16 μm to thousands of micrometers and functional devices with aspect ratios greater than 50:1 without using sacrificial supports. This process can enable additive 3D microfabrication of functional devices for a variety of applications.
more »
« less
3D printing of hollow geometries using blocking liquid substitution stereolithography
Abstract Micrometer scale arbitrary hollow geometries within a solid are needed for a variety of applications including microfluidics, thermal management and metamaterials. A major challenge to 3D printing hollow geometries using stereolithography is the ability to retain empty spaces in between the solidified regions. In order to prevent unwanted polymerization of the trapped resin in the hollow spaces—known as print-through—significant constraints are generally imposed on the primary process parameters such as resin formulation, exposure conditions and layer thickness. Here, we report on a stereolithography process which substitutes the trapped resin with a UV blocking liquid to mitigate print-through. We investigate the mechanism of the developed process and determine guidelines for the formulation of the blocking liquid. The reported method decouples the relationship between the primary process parameters and their effect on print-through. Without having to optimize the primary process parameters to reduce print-through, hollow heights that exceed the limits of conventional stereolithography can be realized. We demonstrate fabrication of a variety of complex hollow geometries with cross-sectional features ranging from tens of micrometer to hundreds of micrometers in size. With the framework presented, this method may be employed for 3D printing functional hollow geometries for a variety of applications, and with improved freedom over the printing process (e.g. material choices, speed and resulting properties of the printed parts).
more »
« less
- Award ID(s):
- 1939009
- PAR ID:
- 10396855
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Light‐based additive manufacturing methods are widely used to print high‐resolution 3D structures for applications in tissue engineering, soft robotics, photonics, and microfluidics, among others. Despite this progress, multi‐material printing with these methods remains challenging due to constraints associated with hardware modifications, control systems, cross‐contamination, waste, and resin properties. Here, a new printing platform coined Meniscus‐enabled Projection Stereolithography (MAPS) is reported, a vat‐free method that relies on generating and maintaining a resin meniscus between a crosslinked structure and bottom window to print lateral, vertical, discrete, or gradient multi‐material 3D structures with no waste and user‐defined mixing between layers. MAPS is compatible with a wide range of resins shown and can print complex multi‐material 3D structures without requiring specialized hardware, software, or complex washing protocols. MAPS's ability to print structures with microscale variations in mechanical stiffness, opacity, surface energy, cell densities, and magnetic properties provides a generic method to make advanced materials for a broad range of applications.more » « less
-
Abstract 3D printing of optics has gained significant attention in optical industry, but most of the research has been focused on organic polymers. In spite of recent progress in 3D printing glass, 3D printing of precision glass optics for imaging applications still faces challenges from shrinkage during printing and thermal processing, and from inadequate surface shape and quality to meet the requirements for imaging applications. This paper reports a new liquid silica resin (LSR) with higher curing speed, better mechanical properties, lower sintering temperature, and reduced shrinkage, as well as the printing process for high‐precision glass optics for imaging applications. It is demonstrated that the proposed material and printing process can print almost all types of optical surfaces, including flat, spherical, aspherical, freeform, and discontinuous surfaces, with accurate surface shape and high surface quality for imaging applications. It is also demonstrated that the proposed method can print complex optical systems with multiple optical elements, completely removing the time‐consuming and error‐prone alignment process. Most importantly, the proposed printing method is able to print optical systems with active moving elements, significantly improving system flexibility and functionality. The printing method will enable the much‐needed transformational manufacturing of complex freeform glass optics that are currently inaccessible with conventional processes.more » « less
-
null (Ed.)Semi-crystalline carbon biochar is derived from spent coffee grounds (SCG) by a controlled pyrolysis process at high temperature/pressure conditions. Obtained biochar is characterized using XRD, SEM, and TEM techniques. Biochar particles are in the micrometer range with nanostructured morphologies. The SCG biochar thus produced is used as reinforcement in epoxy resin to 3 D print samples using the direct-write (DW) method with 1 and 3 wt. % loadings. Rheology results show that the addition of biochar makes resin viscous, enabling it to be stable soon after print; however, it could also lead to clogging of resin in printer head. The printed samples are characterized for chemical, thermal and mechanical properties using FTIR, TGA, DMA and flexure tests. Storage modulus improved with 1 wt. % biochar addition up to 27.5% and flexural modulus and strength increased up to 55.55% and 43.30% respectively. However, with higher loading of 3 wt. % both viscoelastic and flexural properties of 3D printed samples drastically reduced thus undermining the feasibility of 3D printing biochar reinforced epoxies at higher loadings.more » « less
-
Abstract The utility of visible light for 3D printing has increased in recent years owing to its accessibility and reduced materials interactions, such as scattering and absorption/degradation, relative to traditional UV light‐based processes. However, photosystems that react efficiently with visible light often require multiple molecular components and have strong and diverse absorption profiles, increasing the complexity of formulation and printing optimization. Herein, a streamlined method to select and optimize visible light 3D printing conditions is described. First, green light liquid crystal display (LCD) 3D printing using a novel resin is optimized through traditional empirical methods, which involves resin component selection, spectroscopic characterization, time‐intensive 3D printing under several different conditions, and measurements of dimensional accuracy for each printed object. Subsequent analytical quantification of dynamic photon absorption during green light polymerizations unveils relationships to cure depth that enables facile resin and 3D printing optimization using a model that is a modification to the Jacob's equation traditionally used for stereolithographic 3D printing. The approach and model are then validated using a distinct green light‐activated resin for two types of projection‐based 3D printing.more » « less
An official website of the United States government

