skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reconfigurable superdirective beamshaping using a PTX-synthesis metasurface
Parity-time-reciprocal scaling (PTX)-symmetry has been recently proposed to tailor the resonance linewidth and gain threshold of non-Hermitian systems with new exhilarating applications, such as coherent perfect absorber-laser (CPAL) and exceptional point (EP)-based devices. Here, we put forward a nearly-lossless, low-index metachannel formed byPTX-symmetric metasurfaces operating at the CPAL point, supporting the undamped weakly-guided fast wave (leaky mode) and thus achieving ultradirective leaky-wave radiation. Moreover, this structure allows for a reconfigurable and tunable radiation angle as well as beamwidth determined by the reciprocally scaled gain-loss parameter. We envision that the proposedPTX-symmetric metasurfaces will shed light on the design of antennas and emitters with ultrahigh directionality, as well as emerging applications enabled by extreme material properties, such as epsilon-near-zero (ENZ) and beyond.  more » « less
Award ID(s):
2210977
PAR ID:
10396929
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Volume:
13
Issue:
3
ISSN:
2159-3930
Format(s):
Medium: X Size: Article No. 646
Size(s):
Article No. 646
Sponsoring Org:
National Science Foundation
More Like this
  1. Spectral singularities appearing in parity-time (PT)-symmetric non-Hermitian optical systems have aroused a growing interest due to their new exhilarating applications, such as bifurcation effects at exceptional points and the coexistence of coherent perfect absorber and laser (so-called CPAL point). We introduce here how the concept of CPAL action provoked inPT-symmetric metasurfaces can be translated into practical implementation of a low-loss zero/low-index open channel supporting a nearly undamped fast-wave propagation. Such aPT-synthetic metachannel shows the capability to produce a high-directivity leaky radiation, with a tunable beam angle that depends on the gain-loss parameter. The proposed structure may enable new kinds of super-directivity antennas, as well as many applications that demand extreme dielectric properties, such as epsilon-near-zero (ENZ). 
    more » « less
  2. Abstract This article presents a nonlinear leaky wave antenna (LWA) with frequency dependent parametric radiation based on a fundamentally slow‐wave transmission line (TL) structure. Unlike a conventional LWA that radiates at the excitation frequency, the radiation for the proposed travelling wave structure relies on the parametric frequencies based on the injected pump signals. The proposed nonlinear fundamentally slow wave structure utilizes a periodic sharply bend TL loaded by varactor diodes as nonlinear elements. By utilizing then = −1 spatial harmonic, the fundamentally slow wave structure can enter the leaky wave region at higher frequencies, where the parametric radiation results from the bifurcation of the injected pump signals. Such TL‐based nonlinear LWA reduces the design complexity and fabrication difficulty. The resulting parametric frequency radiation can be used for beam steering, which provides additional degree of design freedom. 
    more » « less
  3. Abstract The emergence of new technological needs in 5 G/6 G networking and broadband satellite internet access amplifies the demand for innovative wireless communication hardware, including high-performance low-profile transceivers. In this context, antennas based on metasurfaces – artificial surfaces engineered to manipulate electromagnetic waves at will – represent highly promising solutions. In this article, we introduce leaky-wave metasurface antennas operating at micro/millimeter-wave frequencies that are designed using the principles of quasi-bound states in the continuum, exploiting judiciously tailored spatial symmetries that enable fully customized radiation. Specifically, we unveil additional degrees of control over leaky-wave radiation by demonstrating pointwise control of the amplitude, phase and polarization state of the metasurface aperture fields by carefully breaking relevant symmetries with tailored perturbations. We design and experimentally demonstrate metasurface antenna prototypes showcasing a variety of functionalities advancing capabilities in wireless communications, including single-input multi-output and multi-input multi-output near-field focusing, as well as far-field beam shaping. 
    more » « less
  4. This paper presents a highly efficient single-layer substrate-integrated waveguide (SIW) based leaky-wave antenna (LWA) for the millimeter-wave unmanned aerial vehicle (UAV) communication system. The leaky wave-based radiating part of the unit cell includes a combination of two Y-shaped slots with 46° stretched V etched on the top SIW, resulting in a W-shaped structure. The proposed array achieves a high gain of 13.47 dBi for the frequency range of 56.3 GHz to 63.4 GHz covering the unlicensed band, with a fine matching level below -21 dB. Using the leaky wave antenna's frequency scanning capability, the proposed antenna exhibits a scanning range of 38°. The designed antenna shows a promising solution for the UAV-to-UAV applications due to its low profile and compactness and is well-suited for the single-layer low-cost printed circuit board fabrication process using Rogers RT 5880 as substrate. The radiation pattern for the achieved bandwidth shows an average half-power angular beamwidth of 12.1°, resulting in a radiation efficiency of more than 62% for the elements arranged uniformly at a distance of 0.456λ . Following an overall low-profile compact size of 6.48×4 λ corresponding to 3.24×0.2 cm and improved performance, the antenna achieves an elliptical polarization at 60 GHz for an axial ratio equal to 3.5 dBi. 
    more » « less
  5. Metasurfaces have been rapidly advancing our command over the many degrees of freedom of light within compact, lightweight devices. However, so far, they have mostly been limited to manipulating light in free space. Grating couplers provide the opportunity of bridging far-field optical radiation and in-plane guided waves, and thus have become fundamental building blocks in photonic integrated circuits. However, their operation and degree of light control is much more limited than metasurfaces. Metasurfaces integrated on top of guided wave photonic systems have been explored to control the scattering of light off-chip with enhanced functionalities – namely, point-by-point manipulation of amplitude, phase or polarization. However, these efforts have so far been limited to controlling one or two optical degrees of freedom at best, and to device configurations much more complex compared to conventional grating couplers. Here, we introduce leaky-wave metasurfaces, which are based on symmetry-broken photonic crystal slabs that support quasi-bound states in the continuum. This platform has a compact form factor equivalent to the one of conventional grating couplers, but it provides full command over amplitude, phase and polarization (four optical degrees of freedom) across large apertures. We present experimental demonstrations of various functionalities for operation at λ= 1.55 μm based on leaky-wave metasurfaces, including devices for phase and amplitude control at a fixed polarization state, and devices controlling all four optical degrees of freedom. Our results merge the fields of guided and free-space optics under the umbrella of metasurfaces, exploiting the hybrid nature of quasi-bound states in the continuum, for opportunities to advance in disruptive ways imaging, communications, augmented reality, quantum optics, LIDAR, and integrated photonic systems. 
    more » « less