skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Superdirective leaky radiation from a PT-synthetic metachannel
Spectral singularities appearing in parity-time (PT)-symmetric non-Hermitian optical systems have aroused a growing interest due to their new exhilarating applications, such as bifurcation effects at exceptional points and the coexistence of coherent perfect absorber and laser (so-called CPAL point). We introduce here how the concept of CPAL action provoked inPT-symmetric metasurfaces can be translated into practical implementation of a low-loss zero/low-index open channel supporting a nearly undamped fast-wave propagation. Such aPT-synthetic metachannel shows the capability to produce a high-directivity leaky radiation, with a tunable beam angle that depends on the gain-loss parameter. The proposed structure may enable new kinds of super-directivity antennas, as well as many applications that demand extreme dielectric properties, such as epsilon-near-zero (ENZ).  more » « less
Award ID(s):
1917678
PAR ID:
10220648
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
29
Issue:
8
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 12330
Size(s):
Article No. 12330
Sponsoring Org:
National Science Foundation
More Like this
  1. Parity-time-reciprocal scaling (PTX)-symmetry has been recently proposed to tailor the resonance linewidth and gain threshold of non-Hermitian systems with new exhilarating applications, such as coherent perfect absorber-laser (CPAL) and exceptional point (EP)-based devices. Here, we put forward a nearly-lossless, low-index metachannel formed byPTX-symmetric metasurfaces operating at the CPAL point, supporting the undamped weakly-guided fast wave (leaky mode) and thus achieving ultradirective leaky-wave radiation. Moreover, this structure allows for a reconfigurable and tunable radiation angle as well as beamwidth determined by the reciprocally scaled gain-loss parameter. We envision that the proposedPTX-symmetric metasurfaces will shed light on the design of antennas and emitters with ultrahigh directionality, as well as emerging applications enabled by extreme material properties, such as epsilon-near-zero (ENZ) and beyond. 
    more » « less
  2. Open systems with balanced gain and loss, described by parity-time reversal (PT) symmetric Hamiltonians have been deeply explored over the past decade. Most explorations are limited to finite discrete models (in real or reciprocal spaces) or continuum problems in one dimension. As a result, these models do not leverage the complexity and variability of two-dimensional continuum problems on a compact support. Here, we investigate eigenvalues of the Schrödinger equation on a disk with zero boundary condition, in the presence of constant, PT-symmetric, gain-loss potential that is confined to two mirror-symmetric disks. We find a rich variety of exceptional points, re-entrant PT-symmetric phases, and a nonmonotonic dependence of the PT-symmetry breaking threshold on the system parameters. By comparing results of two model variations, we show that this simple model of a multicore fiber supports propagating modes in the presence of gain and loss. 
    more » « less
  3. Parity-time (PT) symmetry was first studied in quantum mechanical systems with a non-Hermitian Hamiltonian whose observables are real-valued. Most existing designs of PT symmetric systems in electronics, optics, and acoustics rely on an exact balance of loss and gain in the media to achieve PT symmetry. However, the dispersive behavior of most loss and gain materials restricts the frequency range where the system is PT symmetric. This makes it challenging to access the exceptional points of the system to observe the PT symmetric transition dynamics. Here, we propose a new path to realize PT symmetric systems based on gyroscopic effects instead of using loss and gain units. We demonstrate that PT symmetry and the occurrence of exceptional points are preserved for inversive, counter-rotating gyroscopic systems even with dispersive sub-units. In a gyroscopic system with two circular rings rotating in opposite directions at the same speed, the spontaneous symmetry breaking across the exceptional points results in a phase transition from a moving maximum deformation location to a motionless maximum point. The motionless maximum point occurs despite the externally imposed rotation of the two rings. The results set the foundation to study nonlinear dispersive physics in PT symmetric systems, including solitary waves and inelastic wave scattering. 
    more » « less
  4. The non-Hermitian models, which are symmetric under parity (P) and time-reversal (T) operators, are the cornerstone for the fabrication of new ultra-sensitive optoelectronic devices. However, providing the gain in such systems usually demands precise control of nonlinear processes, limiting their application. In this paper, to bypass this obstacle, we introduce a class of time-dependent non-Hermitian Hamiltonians (not necessarily Floquet) that can describe a two-level system with temporally modulated on-site potential and couplings. We show that implementing an appropriate non-Unitary gauge transformation converts the original system to an effective one with a balanced gain and loss. This will allow us to derive the evolution of states analytically. Our proposed class of Hamiltonians can be employed in different platforms such as electronic circuits, acoustics, and photonics to design structures with hiddenPT-symmetry potentially without imaginary onsite amplification and absorption mechanism to obtain an exceptional point. 
    more » « less
  5. The dynamical behavior of broken symmetric coupled cavity lasers is theoretically investigated. The frequency response of this class of lasers is obtained using small signal analysis under direct modulation. Our model predicts a modulation bandwidth enhancement as a broken symmetric laser, operating in the parity-time (PT) symmetry and non-PT symmetry domains. This theoretical prediction is numerically examined in a laser system based on an InGaAs quantum dot platform. Our results clearly show that in these structures, in addition to the injection current, the gain-loss contrast can be used as a new degree of freedom in order to control the characteristic poles of the frequency response function. 
    more » « less