Abstract We present Hubble Space Telescope (HST) imaging of the site of SN 2015bh in the nearby spiral galaxy NGC 2770 taken between 2017 and 2019, nearly four years after the peak of the explosion. In 2017–2018, the transient fades steadily in optical filters before declining more slowly toF814W= −7.1 mag in 2019, ≈4 mag below the level of its eruptive luminous blue variable (LBV) progenitor observed with HST in 2008–2009. The source fades at a constant color ofF555W−F814W= 0.4 mag until 2018, similar to SN 2009ip and consistent with a spectrum dominated by interaction of the ejecta with circumstellar material (CSM). A deep optical spectrum obtained in 2021 lacks signatures of ongoing interaction (LHα≲ 1038erg s−1for broadened emission ≲2000 km s−1), but indicates the presence of a nearby Hiiregion (≲300 pc). The color evolution of the fading source makes it unlikely that emission from a scattered-light echo or binary OB companion of the progenitor contributes significantly to the flattening of the late-time light curve. The remaining emission in 2019 may plausibly be attributed an evolved/inflated companion or an unresolved (≲3 pc), young stellar cluster. Importantly, the color evolution of SN 2015bh rules out scenarios in which the surviving progenitor is obscured by nascent dust and does not clearly indicate a transition to a hotter, optically faint state. The simplest explanation is that the massive progenitor did not survive. SN 2015bh likely represents a remarkable example of the terminal explosion of a massive star preceded by decades of end-stage eruptive variability.
more »
« less
Dust Echoes from Luminous Fast Blue Optical Transients
Abstract Luminous fast blue optical transients (LFBOTs) such as AT2018cow form a rare class of engine-powered explosions of uncertain origin. A hallmark feature of these events is radio/millimeter synchrotron emission powered by the interaction of fast ≳0.1cejecta and dense circumstellar material (CSM) extending to large radii ≳1016cm surrounding the progenitor. Assuming this CSM to be an outflow from the progenitor, we show that dust grains up to ∼1μm in size can form in the outflow in the years before the explosion. This dusty CSM would attenuate the transient’s ultraviolet emission prior to peak light, before being destroyed by the rising luminosity, reddening the premaximum colors (consistent with the premaximum red-to-blue color evolution of the LFBOT candidate MUSSES2020J). Reradiation by the dust before being destroyed generates a near-infrared (NIR) “echo” of luminosity ∼1041–1042erg s−1lasting weeks, which is detectable over the transient’s rapidly fading blue continuum. We show that this dust echo is compatible with the previously unexplained NIR excess observed in AT2018cow. The gradual decay of the early NIR light curve can result from CSM, which is concentrated in a wide-angle equatorial outflow or torus, consistent with the highly aspherical geometry of AT2018cow’s ejecta. Premaximum optical/UV and NIR follow-up of LFBOTs provide a new probe of their CSM environments and place additional constraints on their progenitors.
more »
« less
- Award ID(s):
- 2009255
- PAR ID:
- 10396993
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 944
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 74
- Size(s):
- Article No. 74
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A range of stellar explosions, including supernovae (SNe), tidal disruption events (TDE), and fast blue optical transients (FBOTs), can occur in dusty environments initially opaque to transients’ optical/UV light, becoming visible only once the dust is destroyed by transients’ rising luminosity. We present axisymmetric, time-dependent radiation transport simulations of dust-shrouded transients withAthena++and tabulated gray opacities, predicting the light curves of the dust-reprocessed infrared (IR) radiation. The luminosity and timescale of the IR light curve depend on whether the transient rises rapidly or slowly compared to the light-crossing time of the photosphere,tlc. For slow-rising transients (trise ≫ tlc) like SNe, the reprocessed IR radiation diffuses outward through the dust shell faster than the shell sublimates; the IR light curve therefore begins rising prior to the escape of UV/optical light, but peaks on a timescale ∼triseshorter than the transient duration. By contrast, for fast-rising transients (trise ≪ tlc) such as FBOTs and some TDEs, the finite light-travel time results in the reprocessed radiation arriving as an “echo” lasting much longer than the transient itself. We explore the effects of the system geometry by considering a torus-shaped distribution of dust. The IR light curves seen by observers in the equatorial plane of the torus resemble those for a spherical dust shell, while polar observers see faster-rising, brighter, and shorter-lived emission. We successfully model the IR excess seen in AT2018cow as a dust echo, supporting the presence of an opaque dusty medium surrounding FBOTs prior to explosion.more » « less
-
Abstract We present photometric and spectroscopic observations of the nearby (D≈ 28 Mpc) interacting supernova (SN) 2019esa, discovered within hours of explosion and serendipitously observed by the Transiting Exoplanet Survey Satellite (TESS). Early, high-cadence light curves from both TESS and the DLT40 survey tightly constrain the time of explosion, and show a 30 day rise to maximum light followed by a near-constant linear decline in luminosity. Optical spectroscopy over the first 40 days revealed a reddened object with narrow Balmer emission lines seen in Type IIn SNe. The slow rise to maximum in the optical light curve combined with the lack of broad Hαemission suggest the presence of very optically thick and close circumstellar material (CSM) that quickly decelerated the SN ejecta. This CSM was likely created from a massive star progenitor with an ∼ 0.2M☉yr−1lost in a previous eruptive episode 3–4 yr before eruption, similar to giant eruptions of luminous blue variable stars. At late times, strong intermediate-width Caii, Fei, and Feiilines are seen in the optical spectra, identical to those seen in the superluminous interacting SN 2006gy. The strong CSM interaction masks the underlying explosion mechanism in SN 2019esa, but the combination of the luminosity, strength of the Hαlines, and mass-loss rate of the progenitor seem to be inconsistent with a Type Ia CSM model and instead point to a core-collapse origin.more » « less
-
Abstract We present the discovery and analysis of SN 2022oqm, a Type Ic supernova (SN) detected <1 day after the explosion. The SN rises to a blue and short-lived (2 days) initial peak. Early-time spectral observations of SN 2022oqm show a hot (40,000 K) continuum with high ionization C and O absorption features at velocities of 4000 km s−1, while its photospheric radius expands at 20,000 km s−1, indicating a pre-existing distribution of expanding C/O material. After ∼2.5 days, both the spectrum and light curves evolve into those of a typical SN Ic, with line velocities of ∼10,000 km s−1, in agreement with the evolution of the photospheric radius. The optical light curves reach a second peak att≈ 15 days. Byt= 60 days, the spectrum of SN 2022oqm becomes nearly nebular, displaying strong Caiiand [Caii] emission with no detectable [Oi], marking this event as Ca-rich. The early behavior can be explained by 10−3M⊙of optically thin circumstellar material (CSM) surrounding either (1) a massive compact progenitor such as a Wolf–Rayet star, (2) a massive stripped progenitor with an extended envelope, or (3) a binary system with a white dwarf. We propose that the early-time light curve is powered by both the interaction of the ejecta with the optically thin CSM and shock cooling (in the massive star scenario). The observations can be explained by CSM that is optically thick to X-ray photons, is optically thick in the lines as seen in the spectra, and is optically thin to visible-light continuum photons that come either from downscattered X-rays or from the shock-heated ejecta. Calculations show that this scenario is self-consistent.more » « less
-
Aims.We investigate the spectroscopic characteristics of intermediate-luminosity Red Transients (ILRTs), a class of elusive objects with peak luminosity between that of classical novae and standard supernovae. Our goal is to provide a stepping stone in the path to unveiling the physical origin of these events based on the analysis of the collected datasets. Methods.We present the extensive optical and near-infrared (NIR) spectroscopic monitoring of four ILRTs, namely NGC 300 2008OT-1, AT 2019abn, AT 2019ahd and AT 2019udc. First we focus on the evolution of the most prominent spectral features observed in the low-resolution spectra. We then present a more detailed description of the high-resolution spectrum collected for NGC 300 2008OT-1 with the Very Large Telescope equipped with UVES. Finally, we describe our analysis of late-time spectra of NGC 300 2008OT-1 and AT 2019ahd through comparisons with both synthetic and observed spectra. Results.Balmer and Ca lines dominate the optical spectra, revealing the presence of slowly moving circumstellar medium (CSM) around the objects. The line luminosity of Hα, Hβ, and Ca IINIR triplet presents a double peaked evolution with time, possibly indicative of interaction between fast ejecta and the slow CSM. The high-resolution spectrum of NGC 300 2008OT-1 reveals a complex circumstellar environment, with the transient being surrounded by a slow (∼30 km s−1) progenitor wind. At late epochs, optical spectra of NGC 300 2008OT-1 and AT 2019ahd show broad (∼2500 km s−1) emission features at ∼6170 Å and ∼7000 Å which are unprecedented for ILRTs. We find that these lines originate most likely from the blending of several narrow lines, possibly of iron-peak elements.more » « less
An official website of the United States government
