Summary Combination antiretroviral therapy (ART) with at least three different drugs has become the standard of care for people with HIV (PWH) due to its exceptional effectiveness in viral suppression. However, many ART drugs have been reported to associate with neuropsychiatric adverse effects including depression, especially when certain genetic polymorphisms exist. Pharmacogenetics is an important consideration for administering combination ART as it may influence drug efficacy and increase risk for neuropsychiatric conditions. Large-scale longitudinal HIV databases provide researchers opportunities to investigate the pharmacogenetics of combination ART in a data-driven manner. However, with more than 30 FDA-approved ART drugs, the interplay between the large number of possible ART drug combinations and genetic polymorphisms imposes statistical modeling challenges. We develop a Bayesian approach to examine the longitudinal effects of combination ART and their interactions with genetic polymorphisms on depressive symptoms in PWH. The proposed method utilizes a Gaussian process with a composite kernel function to capture the longitudinal combination ART effects by directly incorporating individuals’ treatment histories, and a Bayesian classification and regression tree to account for individual heterogeneity. Through both simulation studies and an application to a dataset from the Women’s Interagency HIV Study, we demonstrate the clinical utility of the proposed approach in investigating the pharmacogenetics of combination ART and assisting physicians to make effective individualized treatment decisions that can improve health outcomes for PWH. 
                        more » 
                        « less   
                    
                            
                            A Bayesian nonparametric approach for inferring drug combination effects on mental health in people with HIV
                        
                    
    
            Abstract Although combination antiretroviral therapy (ART) with three or more drugs is highly effective in suppressing viral load for people with HIV (human immunodeficiency virus), many ART agents may exacerbate mental health‐related adverse effects including depression. Therefore, understanding the effects of combination ART on mental health can help clinicians personalize medicine with less adverse effects to avoid undesirable health outcomes. The emergence of electronic health records offers researchers' unprecedented access to HIV data including individuals' mental health records, drug prescriptions, and clinical information over time. However, modeling such data is challenging due to high dimensionality of the drug combination space, the individual heterogeneity, and sparseness of the observed drug combinations. To address these challenges, we develop a Bayesian nonparametric approach to learn drug combination effect on mental health in people with HIV adjusting for sociodemographic, behavioral, and clinical factors. The proposed method is built upon the subset‐tree kernel that represents drug combinations in a way that synthesizes known regimen structure into a single mathematical representation. It also utilizes a distance‐dependent Chinese restaurant process to cluster heterogeneous populations while considering individuals' treatment histories. We evaluate the proposed approach through simulation studies, and apply the method to a dataset from the Women's Interagency HIV Study, showing the clinical utility of our model in guiding clinicians to prescribe informed and effective personalized treatment based on individuals' treatment histories and clinical characteristics. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1918854
- PAR ID:
- 10397039
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Biometrics
- Volume:
- 78
- Issue:
- 3
- ISSN:
- 0006-341X
- Format(s):
- Medium: X Size: p. 988-1000
- Size(s):
- p. 988-1000
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            AIDS is a syndrome caused by the HIV. During the progression of AIDS, a patient's immune system is weakened, which increases the patient's susceptibility to infections and diseases. Although antiretroviral drugs can effectively suppress HIV, the virus mutates very quickly and can become resistant to treatment. In addition, the virus can also become resistant to other treatments not currently being used through mutations, which is known in the clinical research community as cross-resistance. Since a single HIV strain can be resistant to multiple drugs, this problem is naturally represented as a multilabel classification problem. Given this multilabel relationship, traditional single-label classification methods often fail to effectively identify the drug resistances that may develop after a particular virus mutation. In this work, we propose a novel multilabel Robust Sample Specific Distance (RSSD) method to identify multiclass HIV drug resistance. Our method is novel in that it can illustrate the relative strength of the drug resistance of a reverse transcriptase (RT) sequence against a given drug nucleoside analog and learn the distance metrics for all the drug resistances. To learn the proposed RSSDs, we formulate a learning objective that maximizes the ratio of the summations of a number of ℓ1-norm distances, which is difficult to solve in general. To solve this optimization problem, we derive an efficient, nongreedy iterative algorithm with rigorously proved convergence. Our new method has been verified on a public HIV type 1 drug resistance data set with over 600 RT sequences and five nucleoside analogs. We compared our method against several state-of-the-art multilabel classification methods, and the experimental results have demonstrated the effectiveness of our proposed method.more » « less
- 
            Acquired immunodeficiency syndrome (AIDS) is a syndrome caused by the human immunodeficiency virus (HIV). During the progression of AIDS, a patient’s the immune system is weakened, which increases the patient’s susceptibility to infections and diseases. Although antiretroviral drugs can effectively suppress HIV, the virus mutates very quickly and can become resistant to treatment. In addition, the virus can also become resistant to other treatments not currently being used through mutations, which is known in the clinical research community as cross-resistance. Since a single HIV strain can be resistant to multiple drugs, this problem is naturally represented as a multi-label classification problem. Given this multi-class relationship, traditional single-label classification methods usually fail to effectively identify the drug resistances that may develop after a particular virus mutation. In this paper, we propose a novel multi-label Robust Sample Specific Distance (RSSD) method to identify multi-class HIV drug resistance. Our method is novel in that it can illustrate the relative strength of the drug resistance of a reverse transcriptase sequence against a given drug nucleoside analogue and learn the distance metrics for all the drug resistances. To learn the proposed RSSDs, we formulate a learning objective that maximizes the ratio of the summations of a number of ℓ1-norm distances, which is difficult to solve in general. To solve this optimization problem, we derive an efficient, non-greedy, iterative algorithm with rigorously proved convergence. Our new method has been verified on a public HIV-1 drug resistance data set with over 600 RT sequences and five nucleoside analogues. We compared our method against other state-of-the-art multi-label classification methods and the experimental results have demonstrated the effectiveness of our proposed method.more » « less
- 
            Scott, Jacob G. (Ed.)The design of efficient combination therapies is a difficult key challenge in the treatment of complex diseases such as cancers. The large heterogeneity of cancers and the large number of available drugs renders exhaustive in vivo or even in vitro investigation of possible treatments impractical. In recent years, sophisticated mechanistic, ordinary differential equation-based pathways models that can predict treatment responses at a molecular level have been developed. However, surprisingly little effort has been put into leveraging these models to find novel therapies. In this paper we use for the first time, to our knowledge, a large-scale state-of-the-art pan-cancer signaling pathway model to identify candidates for novel combination therapies to treat individual cancer cell lines from various tissues (e.g., minimizing proliferation while keeping dosage low to avoid adverse side effects) and populations of heterogeneous cancer cell lines (e.g., minimizing the maximum or average proliferation across the cell lines while keeping dosage low). We also show how our method can be used to optimize the drug combinations used in sequential treatment plans—that is, optimized sequences of potentially different drug combinations—providing additional benefits. In order to solve the treatment optimization problems, we combine the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm with a significantly more scalable sampling scheme for truncated Gaussian distributions, based on a Hamiltonian Monte-Carlo method. These optimization techniques are independent of the signaling pathway model, and can thus be adapted to find treatment candidates for other complex diseases than cancers as well, as long as a suitable predictive model is available.more » « less
- 
            Background While increased CD8 counts and low CD4/CD8 ratio during treated HIV correlate with immunosenescence, their additional predictive values to identify individuals with HIV at higher risk of clinical events remain controversial. Methods We selected treatment-naive individuals initiating ART from ACTG studies 384, 388, A5095, A5142, A5202, and A5257 who had achieved viral suppression at year 2. We examined the effect of CD8+ T cell counts and CD4/CD8 at year 2 on the probability of AIDS and serious non-AIDS events in years 37. We used inverse probability weighting methods to address informative censoring, combined with multivariable logistic regression models. Findings We analyzed 5133 participants with a median age of 38 years; 959 (19%) were female, pre-ART median CD4 counts were 249 (Q1-Q3 91372) cell/µL. Compared to participants with CD8 counts between 500/µL and 1499/µL, those with >1500/µL had a higher risk of clinical events during years 37 (aOR 1.75; 95%CI 1.332.32). CD4/CD8 ratio was not predictive of greater risk of events through year 7. Additional analyses revealed consistent CD8 count effect sizes for the risk of AIDS events and noninfectious non-AIDS events, but opposite effects for the risk of severe infections, which were more frequent among individuals with CD8 counts <500/µL (aOR 1.70; 95%CI 1.092.65). Interpretation The results of this analysis with pooled data from clinical trials support the value of the CD8 count as a predictor of clinical progression. People with very high CD8 counts during suppressive ART might benefit from closer monitoring and may be a target population for novel interventions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
